Appendix A
Scoping Report

Draft Scoping Summary Department of Health and Human Services Centers for Disease Control and Prevention Roybal Campus 2025 Master Plan EIS for CDC's Edward R. Roybal Campus

I. Introduction

The Centers for Disease Control and Prevention (CDC) within the Department of Health and Human Services (HHS) is preparing an Environmental Impact Statement (EIS) for the proposed Roybal Campus 2025 Master Plan for CDC's Edward R. Roybal Campus located at 16000 Clifton Road NE., in Atlanta, Georgia. The EIS will be prepared pursuant to the National Environmental Policy Act (NEPA), as implemented by the Council on Environmental Quality (CEQ) Regulations (40 CFR part 1500-1508) and the Department of Health and Human Services (HHS) General Administration Manual Part 30 Environmental Procedures, dated February 25, 2000.

The scoping process is an integral part of NEPA compliance and serves to identify the full range of environmental issues and alternatives to be evaluated in an EIS. The scoping process provides an opportunity for the public and agencies to comment on the proposed project, with the intent of establishing the scope and content of the EIS. This is done by informing interested persons, organizations, and governmental agencies about the proposed project and seeking input on project alternatives, potential project issues and impacts. A summary of the scoping activities that was conducted as part of the EIS for the Roybal Campus 2025 Master Plan, as well as a summary of the scoping comments received during the scoping period, are provided below.

II. Summary of Scoping Notices

Notice of Intent

A Notice of Intent (NOI) was published on December 17, 2012 in the *Federal Register* to notify the public of CDC's intent to prepare an EIS for the proposed Roybal Campus 2025 Master Plan. The publication of the NOI was the first step in the scoping process and initiated the public comment period (December 12, 2012 through February 1, 2013). The NOI announced CDC's intent to hold public scoping meetings. A copy of the NOI is included in Appendix A.

Notices in Local Newspapers and Websites

An advertisement providing the NOI information was published in the legal notice section of the *Atlanta Journal Constitution* on December 20, 2012, January 4, 2013, January 11, 2013 and January 14, 2013; and on the North Druid Hills – Briarcliff Patch website from January 14 through January 17, 2013. Appendix B contains the advertisements that were published.

Scoping Letters

Scoping letters, providing NOI information and scoping meeting information, were sent out to relevant federal, state, and local agencies, non-governmental organizations, and interested parties. A copy of the distribution list and scoping letters to agencies and interested parties are provided in Appendix C.

III. Scoping Meeting Summary

A public scoping meeting was held on January 17, 2013 at the CDC Edward R. Roybal Campus, Tom Harkin Global Communications Center (Building 19), Auditorium A, 1600 Clifton Road NE., Atlanta, GA. The scoping meeting was announced in the NOI, as well as advertised in the local newspapers, on the DeKalb County website and on other community websites.

The scoping meeting consisted of an open house where attendees were able to view informational material on the proposed action, potential future alternatives, the NEPA process, and obtain forms to guide them in participating in the NEPA process. The informational material, which included display boards, brochures, and comment forms, are provided in Appendix D. Written scoping comment forms were provided to attendees who wished to provide written comments on the scope of the EIS. Written comments were accepted at the meeting, could be mailed to CDC, or submitted electronically via the Federal Rulemaking Portal at www.regulations.gov, identified by Docket No. CDC-2012-0013, by February 1, 2013. Written comments received are provided in Appendix E.

The scoping meeting included a presentation by CDC, followed by a formal comment period during which attendees were given the opportunity to make verbal comments. Attendees who wished to provide a verbal statement were asked to fill out a speaker card and were called upon individually by a moderator during the comment period. The presentation and comment period portion of the scoping meeting was recorded by a stenographer. An American Sign Language interpreter was present at the meeting and closed captioning was provided. A transcript of the meeting and all verbal comments received at the meeting were posted to the public docket at www.regulations.gov and are provided in Appendix F.

IV. Scoping Meeting and Scoping Period Results

A total of 18 people attended the public scoping meeting on January 17, 2013 and four people provided verbal comments during the formal comment period. A total of four written comments were received via mail and/or electronically via the Federal Rulemaking Portal at www.regulations.gov during the scoping comment period (See Appendix E). A summary of the written and verbal comments are provided in Table 1. All substantive comments identified during the scoping process were considered by the CDC during the EIS preparation process.

Table 1. Summary of Comments

Person/Affiliation	Summary of Comments	Response
Elizabeth Shirk	Acknowledge the initiation of	Noted.
GDNR, Historic Preservation Division	Section 106 consultation process.	
Steven M. Wright	No comments at this time.	Noted.
NPS		
Matthew Early	Construction of new facilities on the	Comment Noted.
Emory University	Roybal Campus would increase	
	traffic on Clifton Road and degrade	
	the conditions of roads and increase	
	congestion in surrounding	
	neighborhoods.	Commont Noted
	Recommends that no additional	Comment Noted.
	parking be provided on the Roybal Campus.	
	Emory requests that a traffic impact	A traffic impact study will be
	study be completed.	completed as part of the EIS.
	If substantial traffic impacts result	Comment Noted.
	from the project, CDC should	Comment Noted.
	support the initiation of projects to	
	relieve main arteries.	
	Visual Impacts of new buildings	Comment Noted.
	should be considered.	
Heinz J. Muller	EPA supports alternatives that focus	Comment Noted.
EPA	on increasing the efficient use of	
EPA	existing space and natural	
	resources.	
	EIS should discuss CDC's mission	Comment Noted.
	requirements and future needs.	
	Opportunities to integrate	Comment Noted.
	additional green space into the	
	Master Plan should be considered.	Carrage and Nada d
	Best Management Practices (BMPs) for stormwater runoff should be	Comment Noted.
	implemented.	
	Project should comply with	Comment Noted.
	Georgia's Erosion and Sediment	Comment Noted.
	Control Planning Manual, NPDES,	
	Stormwater Management Program.	
	Development within flood zones	Comment Noted.
	should be avoided.	
	The proposed project should include	Comment Noted.
	resource conservation (green	
	infrastructure) and pollution	
	prevention measures incorporated	
	in the project design and operation	
	of CDC.	
	EPA encourages CDC to work with	Comment Noted.
	surrounding neighbors to address	
	transportation options to reduce	
	vehicular congestion.	

Person/Affiliation	Summary of Comments	Response
	Contractors should implement diesel emission reduction activities.	Comment Noted.
	Noise impacts should be predicted for the No Build and Build alternatives, as well as construction noise impacts.	Comment Noted.
	The EIS should examine the effects of alternatives on minority and/or low income populations and should consider children's health issues.	Comment Noted.
	The EIS should include a demographic analysis.	Comment Noted.
	If impacts to minority and low income populations are identified, efforts to minimize and mitigate adverse impacts should be analyzed.	Comment Noted.
	The EIS should assess impacts to archaeological sites and historic properties in accordance with Section 106 of the National Historic Preservation Act.	Comment Noted.
	EIS should discuss avoidance or minimization and procedures for unearthing archaeological sites during construction.	Comment Noted.
	The NEPA document should define and address indirect and cumulative impacts.	Comment Noted.
John Bugga Mason Mill Civic Association	What plans are there to maintain existing tree cover or any intentions to increase tree cover?	Natural Resources will be analyzed in the EIS.
	Emory University has a policy of no loss of tree cover.	Comment Noted.
Bruce Macgregor Druid Hill Civic Association	Traffic and transportation should be carefully considered. CDC should work with Emory University on alternative transportation options, mass transit and carpooling.	A traffic impact study will be completed as part of the EIS. Comment Noted.
Ntale Kajumba EPA	Is the previous Master Plan available?	Master Plan is not a public document. Previous EIS will be made available via online depository.
Hal Foster Resident of Victoria Estates	The one mile radius does not include Victoria Estates. What does the one mile radius consist of?	1-mile radius was identified by the CDC as the study area for all the topics analyzed in the Environmental Impact Statement.

III. Projected Schedule for EIS Process

The DEIS will incorporate the issues identified during the scoping comment period. It will be prepared in compliance with all applicable federal and state requirements and guidelines. Upon review and acceptance of the DEIS by CDC, the document will be published and made available for public review. A public hearing will be held on the DEIS, similar in format to the Scoping Meeting. At the public hearing, members of the public, as well as interested groups and agencies will be able to submit oral and written comments on the DEIS. The Final EIS will include changes and/or additions to address comments on the DEIS, as well as written responses to each comment. After the FEIS is accepted by CDC, it will be published for public review. Based on the content of the FEIS, the CDC will prepare the required environmental "findings" and a "Record of Decision", indicating the conclusions of the EIS process and the grounds on which a particular alternative was selected.

Scoping Summary Appendix A Notice of Intent

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Centers for Disease Control and Prevention

[Docket No. CDC-2012-0013]

Notice of Intent To Prepare an Environmental Impact Statement, Public Scoping Meeting, and Request for Comments; 2015–2025 Facilities Master Plan for Edward R. Roybal Campus in Atlanta, GA

AGENCY: Centers for Disease Control and Prevention (CDC), Department of Health and Human Services (HHS).

ACTION: Notice of intent; meeting announcement and request for comment.

SUMMARY: The Centers for Disease Control and Prevention (CDC) within the Department of Health and Human Services (HHS) announces its intent to prepare an Environmental Impact Statement (EIS) for the proposed 2015– 2025 Facilities Master Plan for HHS/ CDC's Edward R. Roybal Campus located at 1600 Clifton Road NE., in Atlanta, Georgia. This announcement follows the requirements of the National Environmental Policy Act of 1969 (NEPA) as implemented by the Council on Environmental Quality (CEQ) Regulations (40 CFR Part 1500-1508); and, the Department of Health and Human Services (HHS) General Administration Manual Part 30 Environmental Procedures, dated February 25, 2000.

DATES: A Public Scoping Meeting will be held on Thursday, January 17, 2013 in Atlanta, Georgia. The meeting will begin at 7 p.m. and end no later than 9 p.m. Written scoping comments must be received on or before Friday, February 1, 2013.

Deadline for Requests for Special Accommodations: Persons wishing to participate in the public scoping meeting who need special accommodations should contact George Chandler (gec2@cdc.gov or (404) 639—5153) by 5 p.m. Thursday, January 10, 2013.

ADDRESSES: The Public Scoping Meeting will be held at the CDC Edward R. Roybal Campus, Tom Harkin Global Communications Center (Building 19), Auditorium A, 1600 Clifton Road NE., Atlanta, GA 30333. You should be aware that the meeting location is in a Federal government building; therefore, Federal security measures are applicable. For additional information, please see Roybal Campus Security Guidelines under SUPPLEMENTARY INFORMATION.

You may submit comments identified by Docket No. CDC–2012–0013, by any of the following methods:

- Federal eRulemaking Portal: http://www.regulations.gov. Follow the instructions for submitting comments.
- *Mail:* George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road NE., Mailstop A–22, Atlanta, Georgia 30333.

Instructions: All submissions received must include the agency name and Docket Number. All relevant comments received will be posted without change to http://www.regulations.gov, including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov.

FOR FURTHER INFORMATION CONTACT:

George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road NE., Mailstop A–22, Atlanta, Georgia 30333; telephone (404) 639–5153.

SUPPLEMENTARY INFORMATION: HHS/CDC intends to prepare an Environmental Impact Statement (EIS) to analyze the potential impacts resulting from the proposed Roybal Campus 2015–2025 Facilities Master Plan. The Master Plan will guide the future physical development of the HHS/CDC Roybal Campus in Atlanta, GA, for the years 2015 to 2025. The proposed Master Plan does not constitute authorization or funding for any specific construction project.

Background

HHS/CDC is dedicated to protecting health and promoting quality of life through the prevention and control of disease, injury, and disability. HHS/ CDC, headquartered on Clifton Road in Atlanta, Georgia since 1958, is recognized as the lead Federal agency for protecting the health and safety of people. HHS/CDC provides credible information to enhance health decisions, and promotes health through strong partnerships. HHS/CDC serves as the national focus for developing and applying disease prevention and control, environmental health, and health promotion and education activities designed to improve the health of the people of the United

Because the 2000–2009 Master Plan has been successfully implemented, HHS/CDC is planning to prepare a new Roybal Campus Facilities Master Plan for 2015–2025. The new Master Plan will cover a 10-year planning period and will examine potential growth in agency mission, laboratory and laboratory support space, office space

and personnel on the Roybal Campus. The Master Plan will also examine alternative ways of supporting potential mission change or growth at the Roybal Campus, including new construction of laboratory and office buildings, as well as better use of existing space to house potential growth. The Master Plan will evaluate opportunities for future development of the site, and consider the limits and capacity of both the Roybal Campus proper and the surrounding community. The potential impacts of future development on the natural and built environment will be evaluated.

In accordance with the National Environmental Policy Act of 1969 (NEPA) as implemented by the Council on Environmental Quality (CEQ) regulations (40 CFR Part 1500-1508), and the HHS environmental procedures, HHS/CDC will prepare an EIS for the proposed 2015-2025 Facilities Master Plan. Under NEPA, Federal agencies are required to evaluate the environmental effects of their proposed actions and a range of feasible alternatives to the proposed action before making a decision. Areas of concern include, but are not limited to: traffic and transportation; air quality; community services; natural resources; community and employee quality of life; and utilities (water and power).

Scoping Process

In accordance with NEPA, a Public Scoping process will be conducted to identify the range of major issues to be addressed relative to the proposed 2015-2025 Facilities Master Plan. "Scoping" is the early and open process for determining the scope of issues to be addressed and for identifying the significant issues related to selecting and implementing one of several potential Roybal Master Plan alternatives. During the scoping process, HHS/CDC will actively seek input from interested people, organizations, and Federal, state, and regional agencies to identify environmental concerns to be addressed in the EIS. The purpose of this Notice is to inform interested parties regarding HHS/CDC's plan to prepare the EIS for the 2015–2025 Facilities Master Plan, to provide information on the nature of the Proposed Action and to initiate the scoping process. The Scoping Meeting will consist of an "Open House" from 7 p.m. to approximately 7:45 p.m., where HHS/CDC will make available a general site plan and publically available information on the current conditions of the Campus. HHS/CDC will also provide available data on possible future development

alternatives. Scoping comment cards will be provided at the Open House portion of the meeting for those who need to leave early but who wish to make a comment for the record. At approximately 8 p.m., HHS/CDC will give a brief overview of the current conditions and the planning and EIS processes. Individuals staying for this portion of the Scoping Meeting may make verbal statements or use a Scoping comment card. A stenographer will record this portion of the Scoping Meeting. An American Sign Language Interpreter will be available at both portions of the Scoping Meeting. The agenda is subject to change without notice. A transcript of the meeting and all comments received at the meeting will be posted to the public docket at www.regulations.gov.

Roybal Campus Security Guidelines

The Edward R. Roybal Campus is the headquarters of the U.S. Centers for Disease Control and Prevention and is located at 1600 Clifton Road NE., Atlanta, Georgia. The meeting is being held in a Federal government building; therefore, Federal security measures are applicable.

In planning your arrival time, please take into account the need to park and clear security. All visitors must enter the Roybal Campus through the entrance on Clifton Road; the guard force will direct visitors to the designated parking area. Visitors must present government issued photo identification (e.g., a valid Federal identification badge, state driver's license, state non-driver's identification card, or passport). Non-United States citizens must present a valid passport,

visa, Permanent Resident Card, or other type of work authorization document. All persons entering the building must pass through a metal detector. Visitors will be issued a visitor's ID badge at the entrance to Building 19 and will be escorted in groups of 5–10 persons to the meeting room. All items brought to HHS/CDC are subject to inspection.

Dated: December 11, 2012.

Tanja Popovic,

Deputy Associate Director for Science, Centers for Disease Control and Prevention. [FR Doc. 2012–30276 Filed 12–14–12; 8:45 am] BILLING CODE 4163–18–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Administration for Children and Families

Submission for OMB Review; Comment Request

Title: Understanding the Dynamics of Disconnection from Employment and Assistance.

OMB No.: New Collection.
Description: The Office of Planning,
Research and Evaluation,
Administration for Children and
Families (ACF), U.S. Department of
Health and Human Services (HHS), is
proposing a data collection activity to
improve understanding of low-income
individuals and families who are
disconnected from employment and
from public assistance and particularly
those not receiving cash assistance
through the Temporary Assistance for
Needy Families (TANF) program. ACF
is proposing to use a discussion guide

guide will be used to interview respondents in order to learn about their experiences with disconnection. Topics will include recent employment and reasons for not working; use of public benefit programs and reasons for using or not using specific benefits; their financial circumstances and material well-being including the stability and sources of income, housing and living arrangements; their coping strategies for addressing their circumstances; and their views on potential pathways to improve their financial and material well-being.

Information will be collected in two sites with relatively high concentrations of low-income families: Los Angeles, California and Southeast Michigan. Respondents will be sampled from two existing longitudinal surveys in those sites: The Best Start Los Angeles Pilot Community Evaluation, currently led by the Urban Institute's Health Policy Center and the Center for Healthier Children, Families and Communities at the University of California Los Angeles (UCLA), and the Michigan Recession and Recovery Study OIRTO, conducted by the National Poverty Center of the University of Michigan.

Respondents: Low-income women who have resident children and who are neither employed nor receiving TANF or Supplemental Security Income (SSI) for themselves. Women who are currently employed or receiving TANF may be included in the study if they experienced at least six months of unemployment in the past two years, had a child Lid were unmarried during the period of unemployment, and were not receiving TANF at the time.

ANNUAL BURDEN ESTIMATES

to collect qualitative information. The

Instrument	Annual number of respondents	Number of responses per respondent	Average burden hours per response	Total annual burden hours
Advertisement Script (LA)	300	1	0.1	30
Telephone Recruitment script and Screener (LA)	100	1	0.25	25
Follow-up Telephone Script to Schedule Interview (LA)	36	1	0.05	2
Consent Form for Interviews (LA)	36	1	0.2	7
Receipt of Payment Form (LA)	36	1	0.03	1
Consent Form for Linking Data (LA)	36	1	0.08	3
Telephone Recruitment Script and Screener (MI)	35	1	0.25	9
Consent Form for Interviews (MI)	30	1	0.2	6
Conversation Guide (LA and MI)	66	90	1.5	99

Estimated Total Annual burden hours: 182.

Additional Information: Copies of the proposed collection may be obtained by writing to the Administration for Children and Families, Office of Planning, Research and Evaluation, 370 L'Enfant Promenade SW., Washington, DC 20447, Attn: OPRE Reports Clearance Officer. All requests should be identified by the title of the information collection. Email address: OPREinfocollection@acf.hhs.gov.

OMB Comment: OMB is required to make a decision concerning the collection of information between 30 and 60 days after publication of this document in the **Federal Register**. Therefore, a comment is best assured of having its full effect if OMB receives it

Scoping Summary Appendix B Newspaper Advertisements and Scoping Meeting Notices

y to buy and demolish or edevelor some of those to why our projects don't partn Atlanta Journal Constitution lasn't|December 20, 2012

County officials say here's been a lot of studes over the years about low to improve South lobb, but little action.

er, proj-T don't اسد عسد. آ think the area lacks a vision for what could occur here, but somehow our vision is not being carried through."

"I am still at a loss as

rward

control services to Fulton County for much longer.

The foundation says it's losing money on the contract, and Barking Hound did not respond to a recent county request for bids to provide animal control services in the future.

cision to ban the use of bullhooks, a sharptipped tool used to train elephants. Critics say bullhooks inflict pain on the animals.

Atlanta, which hosts the Ringling Bros. and Barnum & Bailey Circus, declined to adopt a simi-

Bennett said the city ultimately hopes to reach a long-term agreement with the county on animal control services.

Green space has been nother hotly contested ssue, but Steve Levetan, hairman of the Sandy prings Conservancy, said he proposal appeared to

ddress most needs. "While it could be arued that there could be r should be more green pace, the plan must be alanced," he said. "We elieve this is a balanced

The next step will be for he city to continue proprty acquisition in the overnment complex area nd make street and sidealk improvements along ne corridor.

More than \$20 million as either been spent or ommitted to the project o far. City leaders say they ill consider more propery purchases in 2013.

Fiery truck wreck on I-75 kills 3 people

Crash shuts down interstate north of Cartersville.

By Mike Morris mmorris@ajc.com

A deadly truck wreck early Wednesday shut down I-75 in both directions north of Atlanta.

Three people were killed in the fiery crash, which occurred between Cartersville and Adairsville in northern Bartow County.

Georgia State Patrol spokesman Gordy Wright told The Atlanta Journal-Constitution that a northbound tractor-trailer left the roadway on the left side, striking a guardrail and a concrete pillar supporting an overhead sign and bursting into flames.

The sign fell onto the southbound lanes and was struck by a southbound tractor-trailer, which then also ran off the roadway.

The driver and a passenger in the first truck died, and the driver of the second truck was also killed, according to Wright.

The proposal passed 5-2. The current locks are o old parts are no longer vailable.

Inmates can easily open oors, even those in maxinum security, using soap, pilet paper, pieces of cloth r cardboard.

With inmates roaming ee around cellblocks. aff and other inmates – ost of them not yet conicted of crimes – are in anger of sexual assault or evere attacks.

Alpharetta resident ate Boccia has a 22-yearld son who's been in and ut of the Fulton jail durig the past year awaiting n armed robbery trial. It doesn't sit well with er knowing þe's in a facily that can't keep inmates cells.

"As a mother, you defitely worry about your nild's safety," Boccia

"Personally, I think it's diculous that it's taken

this long."

The faulty locks have been a problem for Fulton for well over a decade, with county officials and three different sheriffs' administrations being warned repeatedly that inmates can get past them.

It's one of two major issues left that, if corrected, would resolve a long-running federal lawsuit filed by the Southern Center for Human Rights on behalf of inmates over dangerous, dirty and overcrowded conditions.

Most of the \$140 million that has been spent complying with the consent decree has gone toward extensive renovations and for renting beds in other jails to keep the number of inmates in Fulton's lockup below a cap Shoob set at 2,500.

Chief Jailer Mark Adger said it will take about four months to install the new locks and six months to a

year to satisfy Shoob and the plaintiffs' attorneys that they work.

After Wednesday's vote, Eaves said the county will file a request with the court before the end of the year asking to be let out of the order.

The Southern Center for Human Rights and an expert working for Shoob have said oversight shouldn't end until the county has complied with all the requirements of the consent decree, including replacing all locks and having enough staff working at the lockup all the time.

Adger said the Sheriff's Office needs to hire 30 to 50 employees to solve the staffing problem.

"The obligation of the county is clear," said Melanie Velez, and attorney for the Southern Center for Human Rights. "The detainees of the county jail need to be kept in a safe environment."

Legal Notices

Notice of Intent to Prepare an Environmental Impact Statement, Public Scoping Meeting and Request for Comments

The Centers for Disease Control and Prevention (CDC) within the Department of Health and Human Services (HHS) Intends to prepare an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act of 1969 (NEPA) to analyze the potential Impacts of the proposed 2015-2025 editlets Master Plan for HHS/CDC's Edward R. Roybal Campus located at 1600 Clifton Road, N.E. in Atlanta, Georgia. The Master Plan will guide the future physical development of the HHS/CDC Edward R. Roybal Campus for the years 2015 to 2025.

years 2015 to 2022.

In accordance with NEPA, a Public Scoping process will be conducted to identify the range of major issues to be addressed relative to the proposed 2015-2025 Facilities Master Plan. During the scoping process HHS/CDC will actively seek input from interested persons, organizations, and federal, state, and regional agencles to identify environmental concerns to be addressed in the EIS. The purpose of this Notice of intent is to inform interested parties regarding HHS/CDC's plan to prepare the EIS for the 2015-2025 Facilities Master Plan, to provide information on the nature of the Proposed Action and to initiate the scoping process.

Public Scoping Meeting: The public scoping meeting for the 2015-2025 Facilities Master Plan ElS will be held on January 17, 2013 from 7:00 to 9:00 p.m. at the CDE Edward R. Roybal Campus, Thomas R. Harkin Global Communications Center (Building 19), located at 1600 Cliffon Road N.E., Atlanta, GA 30333, Auditorium A. The scoping meeting will be conducted as an "open house", where visitors may come, receive information and give comments.

Written Scoping Comments: If you are unable to attend the public scoping meeting, written comments can be submitted on or before February 1, 2013. You may submit comments, identified by Docket No. CDC-2012-xxxxx, by any of the following methods:

- Federal Rulemaking Portal: http://www.regulations.gov. Follow the in-structions for submitting comments. Mail: George F. Chandler, Senior Advisor, Centers for Disease Cohtrol and Prevention, 1600 Clifton Road, N.E., Mailstop A-22, At-lanta, Georgia 30333

Instructions: All submissions received must include the agency name and Docket Number. All relevant comments received will be posted without change to http://regulations.gov, including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov.

For Further Information Contact: George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Mallstop A-22, Atlanta, Georgia 30333: telephone 404.639.5153.

If you worked for Southeastern Fibre Drum Co. In Atlanta from 1965-66, for Tommy Hay Air Conditioning & Heating in Atlanta in 1966; for Stewart Reid Heating and Air Conditioning Co. In Atlanta from 1972-73; or for Southern Motor Carriers Assoc. in Atlanta from 1974-1985, please contact Zac Cooper at 800-479-9533.

NOTICE OF SEIZURE AND INTENT TO FORFEIT DEPARTMENT OF HOMELAND SECURITY, CUSTOMS AND BORDER PROTECTION - Notice is hereby given as required by 19 USC 1607 and 19 CFR 162.45 of the seizure and intent to forfeit the propenty described below which is in violation of Customs laws and/or other pertinent statutes. Any person having a legal interest therein and desiring to claim any of the listed property must appear at the Office of the Fines, Penalties and Forfeitures Officer, U. S. Customs and Border Protection, 157 Tradeport Drive, Atlanta, GA 30354, and file within 20 days of the date of the first publication, a claim to such property and a cost bond (in the appropriate amount). In

I have applied to the City of Atlanta for a Change of ownership, Retail package w/beer and wine. ASR PAL Corporation d/b/a Sylvan Food Mart, 1709 Sylvan Rd, SW, Atlanta, Ga 30310. Hearing to be held by the License Review board, 1/22/ 2013, 5pm. 2nd floor, Committee Room #2, 55 Trinity Ave. Renu Pal, Agent

To see your legal ad on-line, go to: www.ajc.com :

Constitution January 3, 2013 ier vice, z p.m. Saturuay, yyest

Metro Baptist Association. West Georgia Crematory.

DEKALB COUNTY

Betty McCook, 81, of Stone Mountain died Dec. 24. Memorial service, 3 p.m. Saturday, Eternal Hills Funeral Home, Snellville.

DOUGLAS COUNTY

Wayne C. Camp Jr., 80, of Douglasville died Monday Funeral, 2 p.m Friday, Jones-Wynn Funeral Home.

Norma Gail Dorris, 74, of Douglasville died Monday. Funeral, 11 a.m. Saturday, First United Methodist Church, Whitley Garner at Rosehaven.

Patricia Ann Sinyard, 65, of Winston died Tuesday. Funeral, 11 a.m. Friday, Jones-Wynn Funeral Home, Villa Rica.

CEUNUIA

wder

al

Richard Joel Beck, 27, of Cedartown died Sunday, Funeral, 11 a.m. Saturday, Eastview Baptist Church. Olin L. Gammage & Sons Funeral Home.

William Karl "Bud" Duckworth, 69, of Tiger died Tuesday. Graveside service, 11 a.m. today, Roane Cemetery, Clayton. Beck Funeral Home, Clayton,

Charles Samuel Finch, 80 of Jefferson died Tuesday, Funeral, 11 a.m. Friday, Smith Funeral Home, Winder.

Margaret Epting Medlock, 99. of Athens died Monday, Graveside service, 2 p.m. Saturday, Evergreen Memorial Park, Bridges Funeral Home.

Christopher Rouse, 26, of Hoschton died Dec. 27. Memorial service, 2 p.m. today, Evans Funeral Home, Jefferson.

Rosalyn R. Wright, 46, of Greenboro died Saturday, Funeral, 1 p.m. today, Grace Fellowship Baptist Church. Watts Funeral Home, Union Point.

Glynn official's death a mystery

By Gordon Jackson Brunswick News'

Police found an empty holster and unfired bullets belonging to a Glynn County commissioner inside his car about 150 yards from where the official's body was discovered by a docked boat, according to a list of evidence contained in a police report.

The report by Glynn County police also says two empty prescription bottles were collect-

ed from the car of Commissioner Tom Sublett. Friends found Sublett's car and body early Dec. 11 on St. Simons Island after he failed to return home from a poker game with

friends.

An autopsy determined that Sublett, 52, drowned after a gunshot to the head. The Georgia Bureau of Investigation's medical examiner still has not determined whether the death was a homicide or suicide.

"The fact of the matter is suicide has not been ruled out," Glynn County Police Chief Matt Doering said. "It is still being investigated as a homicide because we've not yet looked at all the evidence."

Doering declined to discuss the evidence listed in the police report or say whether investigators have found a gun. Mike McDaniel, the GBI agent in charge of the investigation, also declined to comment.

Police said Sublett, 52, was last seen at about 10:30 p.m. Dec. 10 when he dropped off a friend who had ridden with him to the poker game at the home of one of Sublett's business partners. The commissioner's wife called friends and police the next morning after he failed to come home.

The report released by Glyńn County police said Sublett's wallet was recovered with his driver's license and credit cards still inside.

Doering said the wallet was in the commissioner's back pocket.

receive a lifetime acheivement award from the Recording Academy.

Page was born Nov. 8, 1927, as Clara Ann Fowler in Claremore, Okla. The

echo effect from backup singers, but since Rael and Page were footing the bill, they decided Page would do all the voices by overdubbing.

Legal Notices

Comcast Cable
Important Information About Your Channel
Lineup, Unincorporated South Fulton County,
GA. Effective 02-01-2013, Comcast Spotlight's
Real Estate TV programming on channel 26
(Limited Basic Tier) will be replaced by programming provided by the City of East Point.
This change will affect customers living in
portions of unincorporated Fulton County
which may include your community.

Department of Health and Human Services, Centers for Disease Control and Prevention

Notice of Intent to Prepare an Environmental Impact Statement, Public Scoping Meeting and Request for Comments

The Centers for Disease Control and Prevention (CDC) within the Department of Health and Human Services (HHS) intends to prepare an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act of 1969 (NEPA) to analyze the potential impacts of the proposed 2015-2025 Facilities Master Plan for HHS/CDC's Edward R. Roybal Campus located at 1600 Clifton Road, N.E. in Atlanta, Georgia. The Master Plan will guide the future physical development of the HHS/CDC Edward R. Roybal Campus for the years 2015 to 2025.

years 2015 to 2025.

In accordance with NEPA, a Public Scoping process will be conducted to identify the range of major issues to be addressed relative to the proposed 2015-2025 Facilities Master Plan. During the scoping process HHS/CDC will actively seek input from interested persons, organizations, and federal, state, and regional agencies to identify environmental concerns to be addressed in the EIS. The purpose of this Notice of Intent is to inform interested parties regarding HHS/CDC's plan to prepare the EIS for the 2015-2025 Facilities Master Plan, to provide information on the nature of the Proposed Action and to initiate the scoping process.

Public Scoping Maeking: The public scoping meeting for the 2015-2025 Facilities Master Plan ElS will be held on January 17, 2013 from 7:00 to 9:00 p.m. at the CDC Edward R. Roybal Campus, Thomas R. Harkin Global Communications Center (Building 19), located at 1600 Clifton Road N.E., Atlanta, GA 30333, Auditorium A. The scoping meeting will be conducted as an "open house", where visitors may come, receive information and give comments.

Written Scoping Comments: If you are unable to attend the public scoping meeting, written comments can be submitted on or before February 1, 2013. You may submit comments, identified by Docket No. CDC-2012-xxxx, by any of the following methods:

- Federal Rulemaking Portal: http://www.regulations.gov. Follow the in-structions for submitting comments. - Mail: George F. Chandler, Senior Advisor,

Notice of **Nondiscriminatory** Policy as to Students

The Paideia School admits students of any race, color, national and ethnic origin to all the rights, privileges, programs. and activities generally accorded or made available to students at he school. It does not discriminate on the basis of race, color, national and ethic origin, religion or sexual orientation in administration of its educational policies, admissions policies, financial aid program, and athletic and other

school-administered programs.

Instructions: All submissions received must include the agency name and Docket Number. All relevant comments received will be posted without change to http://regulations.gov, including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov.

For Further Information Contact: George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Malistop A-22, Atlanta, Georgia 30333: telephone 404.639.5153.

telephone 404.639.5153.

INVITATION FOR BIDS
METROPOLITAN ATLANTA RAPID TRANSIT.
AUTHORITY (MARTA)
will accept Bids as follows:
CP B27655 lob Order Contract. Pre-Bid Conference January 15, 2013 at 10:00 a.m. Bid Opening February 12, 2013 at 11:00 a.m. For more information call Tahirah Wilson at 404-848-4160.
To obtain a Bid document or CD, contact MARTA'S Contract Control Branch at 404-848-5580. You may also use a major credit card to purchase Bid documents or CDs. Bids should be received at 2424 Pledmont Road, N.E., Lobby Floor, Atlanta, GA 30324 by the aforementioned date and local time. Envelopes containing bids MUST BE marked with Bid Number and returned to the Contract Control Branch. Contracts are subject to Federal Grant Regulations and to MARTA'S Resolution on Equal Opportunity prohibiting discrimination based on race, color, sex, religion or national origin.

View MARTA'S Home Page
About MARTA
http://www.lstmarta.com

I have applied to the City of Atlanta for a Convention center w/ beer, wine & liquor consumed on premises with customer dancing & live entertainment Change of Ownership lic. for Proof of the Pudding by MGR, Inc. d/b/a Proof of the Pudding at The World of Coca Cola at 121 Baker St, Atlanta, GA 30313. Hearing to be held by the Lic. Rev. Bd, 2/12/13 5 PM, 2nd floor, Comm. Rm #2, 55 Trinity Ave. Adam Noyes, Agent.

I have applied to the City of Atlanta for a new applicant, old location, with liquor, beer & wine ESB, LLC D/B/A American Roadhouse Restaurant, 842 North Highland Ave., Atlanta 30306. Hearing to be held by the License Review board, 1/22/2013, 5PM, 2nd floor, Committee Room #2, Trinity Ave. Emile Blau, Agent.

JACKSON, Donay

H.M. PATTERSON & S ABERNATHY, William BENTLEY, John BITTER, John, Jr. DAUGHTRIDGE, Nell NOWAK, Theodore PIPKIN, Mary SMITH, Charlotte

HAUGABROOKS F.F

HINES HOME OF FUNER

INGRAM BROTHERS F LESTER LACKEY & SO

M. WILLIAM MURPHY

McDONALD & SON F

MURRAY BROTHER CLARK, Charlie N KING, Sylvia

PARROTT FUNERAL HO

RALEIGH RUCKER F. ADAMS, Bernice ECHOLS, Carrie GARNER, Alejandro

SANDY SPRINGS CHAI SCOT WARD FUNERAL

SELLERS-SWITH F.H. JOHNSON, W.J.

SMITH F.H.

SOUTHCARE CREMATIC FUNERAL SOCIETY

BEHNING, Frank BERRYHILL: Louise CHAPMAN, Carroll MOORE, Brenda

SPEER & SPEER

THOMAS L. SCROGGS I

THOMAS POTEET & SC F.H. KIRBY, Hoyt

TIM STEWART F.H.

TOM M. WAGES F.H CLARKE, Alberta JOHNSON, Royce

TRI-CITIES FUNERAL HO

WATTS F.H.

WEST COBB F.H.

WHITE COLUMNS CHAI

WILLIAM GAYLEAN MURRAY & SON JONES, BOBBy

WILLIAMSON MORTUA

WILLIE A. WATKINS

BOWEN, Geraldine DAVIS-STEWART, Dorothy JENKINS, Margaret JOHNSON, Liewelyn LEWIS, Lillian REYNOLDS, Lillie THOMAS, Christopher WALLER, Cynthia

OTHER DANIEL, William

ADAMS, Bernice

Ms. Bernice Adams passed Janua 2013. Homegoing Service wi held, Friday, January 4, 2013 at PM at the Chapel of Raleigh Ru Dr. Joseph Crawford, Sr., officia Interment Resthaven Garden Memory. Please assemble at Chapel at 12:30 PM. Raleigh R Funeral Home 404-288-7015.

Express condolences at ajc.com/

Atlanta Journal Constitution January 10, 2013

ty's cities, where 90 percent of Fulton's residents now live.

ıd-

po-

ļΓ

0

1-

1

e

ıf-

Lawmakers will also approve new district maps and could eliminate Commissioner Robb Pitts' countywide seat, adding a new seat for north Fulton and significantly increasing the area's sway over the county.

Wednesday's vote to eliminate the in-house intergovernmental affairs division, which Pitts prompted, also put in question the jobs of Ligon and two other staffers. The panel left it to interim County Manager DaL Caracia (3 1312) tions, which Vaquer has done in the past.

"It's not a bad strategy if they will truly do it," said Clint Mueller, legislative director of the Association County Commissioners of Georgia. "I think if (Commission Chairman) John Eaves is willing to go over there and discuss his issues directly with the delegation without using a lobbyist,

CHOLIPPOO SINII Commissioners also decided against hiring outside lobbyists with the firm Arnall Golden Gregory at a cost of \$260,416, saying that would send the wrong message to legislators who believe Fulton is bloated and wasteful.

Denying that contract and eliminating the inhouse staff frees up more than \$400,000.

egalNotices

Sinjail

released on a \$25,000 bond. He was indicted in January 1983 on three counts of child molestation and two counts of incest. Several months later, Parker fled from Georgia before his trial could begin.

STERLING SILVERI

TIVELY BUYING AT THIS TIME!

ware *Holloware *Silver Bars luy Gold

ER&ANTIQUES ide Drive, N.W. www.atlantasilver.com

YOUR CAR

eels For Wishes

Georgia

hicle Pickup ANYWHERE ept All Vehicles Running or Not Accept Boats, Motorcycles & RVs C Deductible

Call: (678) 235-9413

Department of Health and Human Services, Centers for Disease Control and Prevention

Notice of Intent to Prepare an Environmental Impact Statement, Public Scoping Meeting and Request for Comments

The Centers for Disease Control and Prevention (CDC) within the Department of Health and Human Services (HHS) intends to prepare an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act of 1969 (NEPA) to analyze the potential impacts of the proposed 2015-2025 Facilities Master Plan for HHS/CDC's Edward R. Roybal Campus located at 1500 Clifton Road, N.E. in Atlanta, Georgia. The 2015-2025 Facilities Master Plan will guide the future physical development of the HHS/CDC Edward R. Roybal Campus for the years 2015 to 2025.

In accordance with NEPA, a Public Scoping process will be conducted to identify the range of major issues to be addressed relative to the proposed 2015-2025 Facilities Master Plan. During the scoping process HHS/CDC will actively seek input from interested persons, organizations, and federal, state, and regional agencies to identify environmental concerns to be addressed in the EIS. The purpose of this Notice of Intent is to inform interested parties regarding HHS/CDC's plan to prepare the EIS for the 2015-2025 Facilities Master Plan, to provide information on the nature of the Proposed Action and to inlitate the scoping process.

Public Scoping Meeting: The public scoping meeting for the 2015-2025 Facilities Master Plant RIS will be held on January 17, 2013 from 7:00 to 9:00 p.m. at the CDC Edward R. Roybal Campus, Thomas R. Harkin Global Communications Center (Building 19), located at 1600 Clifton Road N.E., Atlanta, GA 30333, Auditorium A. The scoping meeting will, be conducted as an "open 'house", where visitors may come, receive information and give comments.

Written Scoping Comments: If you are unable to attend the public scoping meeting, written comments can be submitted on or before February 1, 2013. You may submit comments, identified by bocket No. CDC-2012-0013, by any of the following methods:

* Federal eRulemaking Portal: http://www.regulations.gov. Follow the in-structions for submitting comments. * Mail: George F. Chardler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E. Mailstop A-22, At-lanta, Georgia 30333

instructions: All submissions received must include the agency name and Docket Number. All relevant comments received will be posted without hange to http://www.regulations.gov.including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov.

For Further Information Contact: George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1500 Clifton Road, N.E., Mailstop A-22, Atlanta, Georgia 30333, Telephone: 404.639.5153.

Place a

Call 404-526-5573

I have applied to the City of Atlanta for a Food store retail beer only new applicant/ new location lic. Tyler International Group, LLC d/b/a Castleberry Point Market 110 Centennial Olympic Park Dr. NW Ste. 104A Atlanta, GA 30313. Hearing to be held by the License Review board. 1/22/13 5:00 PM 2nd floor, Committee Room #2, 55 Trinity Ave. An-McFarland Tyler, Agent

I have applied to the City of Atlanta for a restaurant w/ beer & wine consumed premise new applicant/ new location lic. Tyler International Group, LLC d/b/a Super 7 Pizza Shoppe 110 Centennial Olympic Park Dr. NW Ste. 104B Atlanta, GA 30313. Hearing to be held by the License Review board, 1/22/13 5:00 PM 2nd floor, Committee Room #2, 55 Trinity Ave. Andre McFarland Tyler, Agent

I have applied to the City of Atlanta for a Re-Package Liquor, tail Beer & Wine Change of Ownership Lic. for Hemant Bhalla, Individual d/b/a/ Moreland Package Store 15 Moreland Ave SE Atlanta, GA 30316. Hearing to be held by the License Review Bd, 1/22/2013 5PM, 2nd flr, Comm. Room #2, 55 Trinity 5PM, Ave. Hemant Bhalla, Agent

ANTA RAPID TRANSIT AUTHORITY

Hearings – Jan. 22 & 24, 2013

ard of Directors of the Metropolitan Atlanta Rapid Transit Authority (MARTA) Ild public hearings for the purpose of considering

ice Modifications for April 20, 2013

g and/or adjustments for the following bus routes:

erate a short he North undabout) and to Inman Park/ m weekdays unchanged ergh Station irips.

ond: Realign l and Linecrest p Drive. nents in the

prvices to distion inhound to inue to provide ound from

lixie Hills: to New Jersey ill be the new the selected ents. The Drive, Morris continued. Flowers na Street and tions to Route

) operate assumes vd. /Dixie ded by Route follows from eft-Waterbury wers Drive, ft-Verbena

Street, Right-Penelope Street, Left-Aaron Street, Right-Penelope Road, and Right-Anderson Avenue returning to West Lake Station. The segment along Verbena Street. between Waterbury Drive and Chenault Place and along Chenault Place will be discontinued.

Route 86 - Fairington Road/McAfee Road: Realign services to operate a short turn alignment from GRTA Panola Road Park and Ride Lot to the I-20 Access Road and Old Hillandale Drive on all service days during the hours that the Mall at Stonecrest is closed.

Route 95 - Metropolitan Parkway/Hapeville: Discontinue operation along the S. Central Avenue and Tradeport Blvd. segments. All trips will terminate at King Arnold Street and Sunset Avenue with the exception of the trips that provide direct service to Atlanta Technical and Atlanta Metropolitan Colleges.

Route 110 — Peachtree Street "The Peach": Realign services to provide alternating trips between Five Points and Lenox Stations and Arts Center and Lenox Stations during the hours of 9:00 AM - 8:00 PM on all service days. Service between Arts Center and Five Points Stations will be discontinued before 9:00 AM and after 8:00PM.

Route 172 - Sylvan Road/Virginia Avenue: Realign services to assume the S. Central Avenue and Tradeport Blvd. segments discontinued by Routé 95 -Metropolitan Parkway/Hapeville on selected trips on weekdays and Saturdays only. Service along this segment will not be provided on Sundays.

Route 186 - Rainbow Drive/South DeKalb: Realign services with an extension along Wesley Chapel Road, Snapfinger Woods Drive, E. Wesley Chapel Road returning to Snapfinger Woods Drive, which will be the new terminus for Route 186. Service along the Pleasant Wood Drive and Eastside Drive segments will be provided inbound from the Snapfinger Woods Drive terminus in the AM and outbound before terminating at Snapfinger Woods Drive in the PM until 9:00 PM on all service days.

Thursday, Jan. 24

00 Commerce Dr, Decatur, 30030 | 2424 Piedmont Rd NE, Atlanta, 30324

Maloof Auditorium 7:00 p.m.

Community Exchange: 6-7 P.M.

ding MARTA: Walk one block west of Decatur Rail Station.

MARTA Headquarters 7:00 p.m.

Community Exchange: 6-7 P.M.

Riding MARTA: Across the street from , Lindbergh Center Station.

ıns will also be 424 Piedmont ousiness hours,

fairs, 2424 Piedmont Road, N.E. Atlanta, GA 30324-3330; (3) complete an online Comment Card at www.itsmarta.com; (4) or fax your comments no later than January 27, 2013 to (404)

In the ADA and 1) 848-4037. s, information he Deaf (TDD)

All cifizens of the City of Atlanta and the counties of Fulton, DeKalb, Clayton and Gwinnett whose interests are affected by the subjects to be considered at these hearings are hereby notified and invited to appear at said times and places and present such evidence, comment or objection as their interests require.

will be availhearings and a message at f External Af-

Keith T. Parker, AICP General Manager/CEO

Me Serve With Pride

Department of Health and Human Services, Centers for Disease Control and Prevention

Notice of Intent to Prepare an Environmental Impact Statement, Public Scoping Meeting and Request for Comments

and Request for Commens
The Centers for Disease Control and Prevention (CDC) within the Department of Health and Human Services (HHS) intends to prepare an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act of 1999 (NEPA) to analyze the potential impacts of the proposed 2015-2025 Facilities Master Plan for HHS/CDC's Edward R. Roybal Campus located at 1600 Clifton Road, N.E. in Atlanta, Georgia. The 2015-2025 Facilities Master Plan will guide the future physical development of the HHS/CDC Edward R. Roybal Campus for the years 2015 to 2025.

In accordance with NEPA, a Public Scoping process will be conducted to identify the range of major issues to be addressed relative to the proposed 2015-2025 Facilities Master Plan. During the scoping process HHS/CDC will actively seek input from interested persons, organizations, and federal, state, and regional agencies to identify environmental concerns to be addressed in the EIS. The purpose of this Notice of intent is to inform interested parties regarding HHS/CDC's plan to prepare the EIS for the 2015-2025 Facilities Master Plan, to provide information on the nature of the Proposed Action and to initiate the scoping process.

Public Scoping Meeting: The public scoping meeting for the 2015-2025 Facilities Master Plan ES will be held on January 17, 2013 from 7:00 to 9:00 p.m. at the CDC Edward R. Roybal Campus, Thomas R. Harkin Global Communications Center (Building 19), located at 1600 Clifton Road N.E., Atlanta, GA 30333, Auditorium A., The scoping meeting will be conducted as an "open house", where visitors may come, receive information and give comments.

comments.

Please be advised that the meeting is boing held in a Federal government building; therefore, Federal security measures are applicable. In planning your arrival time, please take into account the need to park and clear security. All visitors must enter the Roybal Campus through the entrance on Cliffon Road; the guard force will direct visitors to the dosignated parking area. Visitors must present government issued photo identification (e.g., a valid Federal identification ladge, state driver's license, state non-driver's identification (ard, or passport). Non-United States citizens must present a valid passport, visa, Permanent Resident Card, or other type of work authorization document. All persons entering the building must pass through a metal detector. Visitors will be Issued a visitor's ID badge at the entrance to Building 19 and will be escorted in groups of 5-10 persons to the meeting room. All Items brought to HHS/COC are subject to inspection.

Written Scoping Comments: If you are un-

Written Scoping Comments: If you are unable to attend the public scoping meeting, written comments can be submitted on or before February 1, 2013. You may submit comments, identified by Docket No. CDC-2012-0013, by any of

"Federal eRulemaking Portal: http://www.regulations.gov. Follow the in structions for submitting comments. "Mail: George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E. Meilstop A-22, At-lanta, Georgia 30333

Instructions: All submissions received must include the agency name and Docket Number. All relevant comments received will be posted without hange to http://www.regulations.gov, including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov.

For Further Information Contact: George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Mailstop A-22, Atlanta, Georgia 30333. Telephone: 404.639.5153.

N.E., Malistop A-22, Atlanta, Georgia 30333. Telephone: 404.639.5153.

INVITATION FOR BIDS

METROPOLITAN ATLANTA RAPID TRANSIT AUTHORITY (MARTA)

Will accept Bids as follows:

RFP P27818 MARTA'S Planning and Technical Services. Bid Opening January 23, 2013 at 2:000 p.m. For more information call Reginald Bryant at 404-848-4158.

CP 8/2020 CCTV System Expansion. Bid Opening February 1, 2013 at 2:00 p.m. For more information call Diane Akinsipe at 404-848-5521.

To obtain a Bid document or CD, contact MARTA'S Contract Control Branch at 404-848-5580. You may also use a major credit card to purchase Bid documents or CDs. Bids should be received at 2424 Piedmont Road, N.E., Lobby Floor, Atlanta, GA 30324 by the aforementioned date and local time. Envelopes containing bids MUST BE marked with Bid Number and returned to the Contract Control Branch. Contracts are subject to Federal Graph Regulations and to MARTA'S Resolution on Equal Opportunity prohibiting discrimination based on race, color, sex, religion or national origin.

Legal ads. 404-526-5573

Editor Jonathan Cribbs Jonathan.cribbs@patch.com

Like 487 Patch Newsletter Nearby

Join Sign In

NorthDruidHills-BriarcliffPatch

<u>Home</u>

Events

Directory

Pics & Clips

Invite a friend

Export <u>Email</u>

Share 5 4 1

Update: Have you liked us on Facebook? Do it! It's the easiest way to stay connected to our content. »

You have been logged out.

Government Department of Health and Human Services, Centers for Disease Control Public Scoping Meeting, Notice of Intent to Prepare and Environmental Impact Statement, Public Scoping Meeting and Request for Comments

1600 Clifton Rd NE, Atlanta, GA | Get Directions »

FREE

Tweet The Centers for Disease Control and Prevention (CDC) within the Department of Health and Human Services (HHS) intends to prepare an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act of 1969 (NEPA) to analyze the potential impacts of the proposed 2015-2025 Facilities Master Plan for HHS/CDC's Edward R. Roybal Campus located at 1600 Clifton Road, N.E. in Atlanta, Georgia. The 2015-2025 Facilities Master Plan will guide the future physical development of the HHS/CDC Edward R.

Roybal Campus for the years 2015 to 2025.

In accordance with NEPA, a Public Scoping process will be conducted to identify the range of major issues to be addressed relative to the proposed 2015-2025 Facilities Master Plan. During the scoping process HHS/CDC will actively seek input from interested persons, organizations, and federal, state, and regional agencies to identify environmental concerns to be addressed in the EIS. The purpose of this Notice of Intent is to inform interested parties regarding HHS/CDC's plan to prepare the EIS for the 2015-2025 Facilities Master Plan, to provide information on the nature of the Proposed Action and to initiate the scoping process.

Public Scoping Meeting: The public scoping meeting for the 2015-2025 Facilities Master Plan EIS will be held on January 17, 2013 from 7:00 to 9:00 p.m. at the CDC Edward R. Roybal Campus, Thomas R. Harkin Global Communications Center (Building 19), located at 1600 Clifton Road N.E., Atlanta, GA 30333, Auditorium A. The scoping meeting will be conducted as an "open house", where visitors may come, receive information and give comments.

Please be advised that the meeting is being held in a Federal government building; therefore, Federal security measures are applicable. In planning your arrival time, please take into account the need to park and clear security. All visitors must enter the Roybal Campus through the entrance on Clifton Road; the guard force will direct visitors to the designated parking area. Visitors must present government issued photo identification (e.g., a valid Federal identification badge, state driver's license, state non-driver's identification card, or passport). Non-United States citizens must present a valid passport, visa, Permanent Resident Card, or other type of work authorization document. All persons entering the building must pass through a metal detector. Visitors will be issued a visitor's ID badge at the entrance to Building 19 and will be escorted in groups of 5-10 persons to the meeting room. All items brought to HHS/CDC are subject to inspection.

Written Scoping Comments: If you are unable to attend the public scoping meeting, written comments can be submitted on or before February 1, 2013. You may submit comments, identified by Docket No. CDC-2012-0013, by any of the following methods:

- Federal eRulemaking Portal: http://www.regulations.gov. Follow the instructions for submitting comments.
- Mail: George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Mailstop A-22, Atlanta, Georgia

Instructions: All submissions received must include the agency name and Docket Number. All relevant comments received will be posted without change to http://www.regulations.gov, including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov.

For Further Information Contact: George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Mailstop A-22, Atlanta, Georgia 30333. Telephone: 404.639.5153.

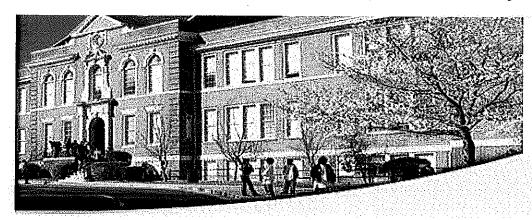
Comment

Recommend 0

Event Details

http://northdruidhills.patch.com/events/department-of-health-and-human-services-centers-for-disease-contr... 1/24/2013

About Us


Live Locally

Walk Anywhere

Commute Creatively

Enhance Vibrant Neighborhoods

Learn About Local Projects

Search

The Clifton Community is fortunate to have a wide variety of cultural, educational, athletic and community events nearly every day of the week.

Visit our calendar to learn more, add your own event and stay engaged in the community. Submit an event

CDC public scoping meeting / 2015-25 Master Plan update

WHEN

Thursday, January 17, 2013, 7 - 9pm

WHERE

HHS/CDC Edward R. Roybal Campus, Thomas R. Harkin Global Communications Cneter

(Building 19 Auditorium A), located at 1600 Clifton Road N.E.

EVENT CATEGORY Community Calendar

NOTE

The CDC is in the process of updating its Master Plan for 2015-2025 and is gathering data from Clifton Corridor organizations in preparation for the required Environmental Impact Statement, which will analyze the potential impacts of their proposed plan on the Corridor.

Federal security measures are applicable. Metal detectors in use, escorts in groups

apply.

LINK

www.gpo.gov...

Add to My Calendar Forward to Friends

Other Event Actions...

Print Permalink 🧱

Events calendar powered by Trumba

ADDITHIS AT Y !!

LIVE LOCALLY

WALK ANYWHERE

COMMUTE CREATIVELY

ENHANCE NEIGHBORHOODS

<u>Disclaimer</u> | <u>Privacy Statement</u> | © Copyright 2008. Clifton Community Partnership. All Rights Reserved, Site Design by <u>Cool Dog Interactive</u>, <u>Inc.</u>

Skip navigation

About Us

Agendas

Contact

search	 	

Information

Skip navigation

District 2 News

Calendar

Neighborhood Associations

Board Appointees

Ordinances

Links

District Map

Event Details

2015-2025 Facilities Master Plan Environmental Impact Statement January 17, 2013 (7:00 pm - 9:00 pm)

CDC invites you to the public scoping meeting for the 2015-2025 Facilities Master Plan Environmental Impact Statement (EIS) January 17th from 7-9pm at the CDC Edward R. Roybal Campus, Thomas R. Harkin Global Communications Center (Bldg 19) Auditorium A at 1600 Clifton Road, NE, Atlanta, GA 30333. Join us to learn more about the plan and provide input input on any issues of potential concern related to the Master Plan and EIS. The scoping meeting will be conducted as an open house.

Go back

© 2013 Commissioner Jeff Rader. All rights reserved.

twitter sitemap facebook

District 2 News signup

Scoping Summary Appendix C Sample Scoping Letters and Distribution List

George F. Chandler Senior Advisor Department of Health and Human Services Centers for Disease Control and Prevention 1600 Clifton Road, N.E., Mailstop A-22 Atlanta, GA 30333

Rob Holland Chief-Public Affairs US Army Corps of Engineers - South Atlantic Division Room 9M15, 60 Forsyth Street SW Atlanta, Georgia 30303

Dear Mr. Holland:

Re: Department of Health and Human Services, Centers for Disease Control and Prevention, 2015-2025 Facilities Master Plan EIS for HHS/CDC's Edward R. Roybal Campus, Atlanta, Georgia

The Centers for Disease Control and Prevention (CDC) within the Department of Health and Human Services (HHS) is preparing an Environmental Impact Statement (EIS) for the proposed 2015-2025 Facilities Master Plan (Master Plan) for HHS/CDC's Edward R. Roybal Campus (Roybal Campus) located at 1600 Clifton Road, N.E. in Atlanta, Georgia. The Master Plan will guide the future physical development of the Roybal Campus for the years 2015 to 2025.

The objective of the EIS is to evaluate the potential impacts to the natural and built environment that would result from the proposed 2015-2025 Facilities Master Plan for the Roybal Campus. The new Master Plan will cover a 10-year planning period and will examine potential growth in Agency Mission, laboratory and laboratory support space, office space and personnel on the Roybal Campus. The Master Plan will also examine alternative ways of accommodating potential Mission change or growth at the Roybal Campus, including new construction of laboratory and office buildings, as well as maximizing the efficiency and utilization of existing space to accommodate potential growth. The Master Plan will evaluate opportunities for future development of the site, taking into consideration constraints and carrying capacity of both the Roybal Campus proper and the surrounding community.

Conceptual alternatives to be evaluated in the Master Plan include: (1) taking no action; (2) increasing existing space efficiency; (3) new laboratory and office mix construction; (4) new laboratory construction only; (5) new office construction only; and, (4) off-site relocation.

The EIS will evaluate the potential impacts of future development of the campus as identified in the Master Plan. Issues that will be analyzed include the project's effect on traffic, air, noise, water quality, as well as other social, economic and environmental effects, including cumulative effects. As part of the process for determining the scope of issues to be addressed in the EIS and for identifying the important issues related to the proposed action, we request your input on the above issues and the EIS. A copy of the project location map and NOI is attached for your reference.

A public scoping meeting for the 2015-2025 Facilities Master Plan EIS will be held on January 17, 2013 from 7:00 to 9:00 p.m. at the CDC Edward R. Roybal Campus, Thomas R. Harkin Global Communications Center (Building 19), located at 1600 Clifton Road N.E., Atlanta, GA 30333, Auditorium A.

Agencies are requested to review the description of the proposed action and provide comments on the environmental issues within their jurisdiction and/or expertise. Written comments must be received on or before February 1, 2013. You may submit comments, identified by Docket No. CDC-2012-0013, by any of the following methods:

- Federal eRulemaking Portal: http://www.regulations.gov.
 Follow the instructions for submitting comments.
- Mail: George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Mailstop A-22, Atlanta, Georgia 30333

Instructions: All submissions received must include the agency name and Docket Number. All relevant comments received will be posted without change to http://www.regulations.gov, including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov.

Please be advised that the meeting is being held in a Federal government building; therefore, Federal security measures are applicable. In planning your arrival time, please take into account the need to park and clear security. All visitors must enter the Roybal Campus through the entrance on Clifton Road; the guard force will direct visitors to the designated parking area. Visitors must present government issued photo identification (e.g., a valid Federal identification badge, state driver's license, state non-driver's identification card, or passport). Non-United States citizens must present a valid passport, visa, Permanent Resident Card, or other type of work authorization document. All persons entering the building must pass through a metal detector. Visitors will be issued a visitor's ID badge at the entrance to Building 19 and will be escorted in groups of 5–10 persons to the meeting room. All items brought to HHS/CDC are subject to inspection.

For further information, please contact George F. Chandler at (404)639-5153. Thank you for your participation.

Sincerely,
George F. Chandler
Senior Advisor
Centers for Disease Control and Prevention

George F. Chandler Senior Advisor Department of Health and Human Services Centers for Disease Control and Prevention 1600 Clifton Road, N.E., Mailstop A-22 Atlanta, GA 30333

James Wagner President Emory University 201 Dowman Drive Atlanta, Georgia 30322

Dear President Wagner:

The Centers for Disease Control and Prevention (CDC) within the Department of Health and Human Services (HHS) recently issued a Notice of Intent to prepare an Environmental Impact Statement (EIS) to analyze the potential impacts of the proposed 2015-2025 Facilities Master Plan for HHS/CDC's Edward R. Roybal Campus located in Atlanta, Georgia. The Master Plan will guide the future physical development of the HHS/CDC's Edward R. Roybal Campus in Atlanta, GA, for the years 2015 to 2025. The proposed Master Plan does not constitute authorization or funding for any specific construction project.

The public scoping meeting for the 2015-2025 Facilities Master Plan EIS will be held on January 17, 2013 from 7:00 to 9:00 p.m. at the HHS/CDC Edward R. Roybal Campus, Thomas R. Harkin Global Communications Center (Building 19), located at 1600 Clifton Road N.E., Atlanta, GA 30333, Auditorium A.

The CDC invites you to attend the public scoping meeting in order to learn more about the proposed 2015-2025 Facilities Master Plan EIS and provide input on any issues of potential concern related to the Master Plan and EIS. The scoping meeting will be conducted as an open house, where visitors may come, receive information and give comments.

If you cannot attend the public scoping meeting, we encourage you to provide written comments on the scope of the 2015-2025 Facilities Master Plan EIS and areas of potential concern. A copy of the Notice of Intent is enclosed to provide you with more information on the proposed action and the scoping process. Written comments must be received on or before February 1, 2013. You may submit comments, identified by Docket No. CDC-2012-0013, by any of the following methods:

- Federal eRulemaking Portal: http://www.regulations.gov.
 Follow the instructions for submitting comments.
- Mail: George F. Chandler, Senior Advisor, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Mailstop A-22, Atlanta, Georgia 30333

Instructions: All submissions received must include the agency name and Docket Number. All relevant comments received will be posted without change to http://www.regulations.gov, including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov.

Please be advised that the meeting is being held in a Federal government building; therefore, Federal security measures are applicable. In planning your arrival time, please take into account the need to park and clear security. All visitors must enter the Roybal Campus through the entrance on Clifton Road; the guard force will

direct visitors to the designated parking area. Visitors must present government issued photo identification (e.g., a valid Federal identification badge, state driver's license, state non-driver's identification card, or passport). Non-United States citizens must present a valid passport, visa, Permanent Resident Card, or other type of work authorization document. All persons entering the building must pass through a metal detector. Visitors will be issued a visitor's ID badge at the entrance to Building 19 and will be escorted in groups of 5–10 persons to the meeting room. All items brought to HHS/CDC are subject to inspection.

For further information, please contact George F. Chandler at (404)639-5153. Thank you for your participation.

Sincerely,
George F. Chandler
Senior Advisor
Centers for Disease Control and Prevention

Mr. Rob Holland Chief-Public Affairs

US Army Corps of Engineers - South Atlantic

Division

Room 9M15, 60 Forsyth Street SW

Atlanta, Georgia 30303

Ms. Doralyn Kirkland Planning and Policy Advisor

Georgia Department of Natural Resources,

Environmental Protection Division

2 Martin Luther King Jr. Drive, Suite 1152, East

Tower

Atlanta, Georgia 30334

Ms. Lyn Menne

Community and Economic Development

Director

City of Decatur Downtown Development

Authority

Decatur City Hall, 509 McDonough Street

Atlanta, Georgia 30030

Mr. Larry Lincoln, Director

US Environmental Protection Agency - Region 4

Office of External Affairs 61 Forsyth Street SW Atlanta, Georgia 30303

Ms. Rachel Brown
District Engineer
Georgia DOT, District 7
5025 New Peachtree Road
Atlanta, Georgia 30341

Ms. Regina Brewer

Historic Preservation Planner

City of Decatur Historic Preservation Decatur City Hall, 509 McDonough Street

Atlanta, Georgia 30030

Mr. Luis J. Santiago Special Agent-in-Charge US Fish and Wildlife Service 1875 Century Boulevard, Suite 380

Atlanta, Georgia 30345

Ms. Jannine Miller Executive Director

Georgia Regional Transportation Authority 245 Peachtree Center Avenue NE, Suite 800

Atlanta, Georgia 30303

Mr. Gary Cornell Interim Director

DeKalb County Planning and Sustainability

330 West Ponce de Leon Avenue

Atlanta, Georgia 30030

Major Phillip May Regional Administrator

Federal Emergency Management Agency

3003 Chamblee Tucker Road Atlanta, Georgia 30341

Dr. David Crass
Division Director

Georgia Department of Natural Resources-

Historic Preservation Division

254 Washington Street SW, Ground Level

Atlanta, Georgia 30334

Mr. Ernest Gilchrist

DeKalb County Development Authority 330 West Ponce de Leon Avenue, 6th Floor

Atlanta, Georgia 30030

Mr. Gordon Wissinger Acting Regional Director National Park Service

100 Alabama Street SW, 1924 Building

Atlanta, Georgia 30303

Mr. Charley English

Director

Georgia Emergency Management Agency

P.O. Box 18055

Atlanta, Georgia 30316

Mr. Burell Ellis DeKalb CEO

330 W. Ponce de Leon Avenue, 6th Floor

Atlanta, Georgia 30030

Ms. Joyce Stanley

Regional Environmental Protection Assistant

US Department of Interior Office of

Environmental Policy and Compliance Atlanta

Region

Suite 1144, 75 Spring Street SW

Atlanta, Georgia 30303

Mr. Joshuah Mello

Assistant Director Transportation Planning

City of Atlanta - Transportation Planning

55 Trinity Avenue, Suite 3350

Atlanta, Georgia 30303

Ms. Patrece Keeter

Dekalb County

Department of Public Works, Transportation

Division

1950 West Exchange Place, Fourth Floor

Tuckery, Georgia 30084

Mr. Jess Weaver

Regional Executive - Southeast Area

US Geological Survey 3039 Amwiler Road NW

Atlanta, Georgia 30360

Mr. Richard Mendoza

Commissioner

City of Atlanta Department of Public Works

55 Trinity Avenue SW, Suite 4700

Atlanta, Georgia 30303

Mr. Ted Rhinehart

Director of Public Works

DeKalb County Public Works Department

330 West Ponce de Leon Avenue, 4th Floor

Decatur, Georgia 30030

Mr. Arnold Cole

Special Agent in Charge

US Department of Homeland Security

SAC Atlanta, 1100 Centre Parkway

Atlanta, Georgia 30344

Ms. Charlotta Wilson Jacks

Director

City of Atlanta Office of Planning

55 Trinity Avenue, Suite 3350

Atlanta, Georgia 30303

Mr. Randy Beck

Director

Fulton County Planning and Community

Services

5440 Fulton Industrial Boulevard

Decatur, Georgia 30336

Mr. David J. Brown

Executive Vice President and Chief Preservation

Officer

National Trust for Historic Preservation

1758 Massachusetts Avenue NW

Washington D.C. 20036

Ms. Jane Rawlings

NPU-F Chair

City of Atlanta, NPU-F

2116 Lenox Road

Atlanta, Georgia 30324

Ms. Vicki D. Coleman

Director

City of Chamblee Development Department

5468 Peachtree Road

Chamblee, Georgia 30341

Mr. Ed Pfister

US Department of Health and Human

Services/Office of Facilities Management and

Policy

61 Forsyth Street SW

Atlanta, Georgia 30303

Mr. Keith Parker

General Manager

MARTA

2424 Piedmont Rd NE

Atlanta, Georgia 30324

Ms. Kate Ryan Director of Preservation Georgia Trust for Historic Preservation Rhodes Hall, 1516 Peachtree Street NW Atlanta, Georgia 30309

Ms. Amanda Thompson Planning Director City of Decatur Planning Commission Decatur City Hall, 509 McDonough Street Atlanta, Georgia 30030

Mr. James Wagner, President Emory University 201 Dowman Drive Atlanta, Georgia 30322

Mr. Darryl Bonner Retail Leasing Emory Point 1627 Clifton Road Atlanta, Georgia 30329

Ms. Betty Willis Executive Director Clifton Community Partnership 1599 Clifton Road NE, 5th Floor Atlanta, Georgia 30322

Mr. Vincent J. Dollard Associate VP Communications Emory University Hospital 1364 Clifton Road Atlanta, Georgia 30322

The University Inn 1767 North Decatur Road Atlanta, Georgia 30307

Mr. John O'Callaghan President Atlanta Neighborhood Development Partnership 235 Peachtree Street NE, Suite 2000 Atlanta, Georgia 30303 Ms. Linda Matzigkeit Chief Administrative Officer Children's Healthcare of Atlanta at Egleston 1405 Clifton Road Atlanta, Georgia 30322

Toco Properties 1800 Briarcliff Road NE Atlanta, Georgia 30329

Mr. Jeff DuFresne Executive Director Urban Land Institute Atlanta District Council 300 Galleria Parkway, Suite 100 Atlanta, Georgia 30339

Public Affairs Officer Marcus Autism Center 201 Dowman Drive Atlanta, Georgia 30322

Ms. Kim Israel Membership Director Druid Hills Golf Club 740 Clifton Road Atlanta, Georgia 30307

Mr. Jim Stokes Executive Director Livable Communities Coalition 10 Peachtree Place, Suite 610 Atlanta, Georgia 30309

Mr. Don Mueller Executive Director Marcus Autism Center 1920 Briarcliff Road Atlanta, Georgia 30329

Ms. Katie Kisner CSX Railroad 500 Water Street Jacksonville, Florida 32202

Mr. Charlie Stokes CDC Foundation

55 Park Place NE, Suite 400 Atlanta, Georgia 30303

Mr. Nate Comstock

Manager of Clinical Operations Emory Orthopedics and Spine Center

59 Executive Park South Atlanta, Georgia 30322

Ms. Mindee Adamson

Principal

Druid Hills High School 1798 Haygood Drive Atlanta, Georgia 30307

Mr. Bruce MacGregor

President

Druid Hills Civic Association

P.O. Box 363

Decatur, Georgia 30031

Wesley Woods Health Center

1817 Clifton Road NE Atlanta, Georgia 30329

Ms. Betty Willis President

Clifton Corridor Transportation Management

Association

1945 Starvine Way Decatur, Georgia 30033

Ms. Cheryl Iverson VP - Marketing

DeKalb Medical Center 2701 North Decatur Road Decatur, Georgia 30033

Mr. Leonardo McClarty

President

DeKalb Chamber of Commerce

Two Decatur Town Center, 125 Clairemont

Avenue, Suite 235 Decatur, Georgia 30030 Ms. Kathryn Johnson General Manger

Emory Conference Center Hotel/Emory Inn

1615 Clifton Road Atlanta, Georgia 30329

Mr. Sam Williams

President

Metro Atlanta Chamber of Commerce

2345 Andrew Young International Boulevard

Atlanta, Georgia 30303

Chief William O'Brien DeKalb County Police 1960 West Exchange Place Tucker, Georgia 30084

AT+T, Local Communications 575 Morosgo Dr NE Rm 14f67 Atlanta, Georgia 30324-3300

Verizon, Long Haul Communications

6 Concourse Parkway Ne Atlanta, Georgia 30328

Harwood Condominium Association

755-A Houston Mill Road Atlanta, Georgia 30329

Ms. Barbara Sanders

Clerk and CEO

DeKalb County Board of Commissioners

1300 Commerce Drive Decatur, Georgia 30030

Commissioner Jeff Rader

DeKalb County Commissioner, District 2 Manuel J. Maloof Center, 1300 Commerce

Drive. 5th Floor

Decatur, Georgia 30030

Mr. Tom Woodward

Lindbergh La Vista Corridor Coalition

1403 LaVista Road NE Atlanta, Georgia 30324

Senator Jason Carter Georgia District 42 P.O. Box 573

Decatur, Georgia 30031

Sheriff Thomas Brown DeKalb County Sheriff 4415 Memorial Drive Decatur, Georgia 30032

Congressman John Lewis

US House Representative, District 5

The Equitable Building, 100 Peachtree Street

NW, #1920

Atlanta, Georgia 30303

Chief Mike Booker

Decatur Police Department 420 W. Trinity Place

Decatur, Georgia 30030

Mr. Jack White President

Virginia Highlands Civic Association

P.O. Box 8041 Station F Atlanta, Georgia 31106

Senator Saxby Chambliss

US Senate

100 Galleria Parkway Atlanta, Georgia 30339

Chief Toni Washington Decatur Fire Department

PO Box 220

Decatur, Georgia 30031

Mr. Chuck Williams

President

Briarcliff Woods Civic Association

P.O. Box 98358

Atlanta, Georgia 30359

Senator Johnny Isakson

US Senate

3625 Cumberland Blvd Atlanta, Georgia 30339

Chief Toni Washington
Decatur Fire Department

PO Box 220

Decatur, Georgia 30031

Congressman Hank Johnson

US House Representative, District 4

5700 Hillondale Drive Lithonia, Georgia 30058

Mr. Joe Basista

Director

DeKalb County Department of Watershed

Management

1580 Roadhaven Drive

Stone Mountain, Georgia 30083

Mayor Kasim Reed

City of Atlanta

55 Trinity Avenue, Suite 2500 Atlanta, Georgia 30303

Mr. Craig Barrs
EVP External Affairs
Georgia Power - Electric
241 Ralph McGill Boulevard
Atlanta, Georgia 30308

Mayor Bill Floyd City of Decatur P.O. Box 220

Decatur, Georgia 30031

Mr. Jim Kibler

VP External Affairs and Public Policy

Atlanta Gas Light- Gas 10 Peachtree Place Atlanta, Georgia 30309

Scoping Letters were emailed to:

Ms. Martha Pacini Communications Representative Victoria Estates Civic Association

Ms. Suzan Rowe President Clairemount Heights Civic Association

Mr. John Bugge President Mason Mill Civic Association

Zonolite Road Business District info@zonoliteroad.com

Mr. Brian Bilski Woodland Hills

Ms. Mary Leight Acting President Briarwood Hills Civic Association

Mr. Todd Hill Chair Alliance to Improve Emory Village

Scoping Summary Appendix D Scoping Meeting Display Boards and Materials

Welcome to the Public Scoping Meeting

2015-2025 Facilities Master Plan EIS for the Centers for Disease Control and Prevention's (CDC) Edward R. Roybal Campus

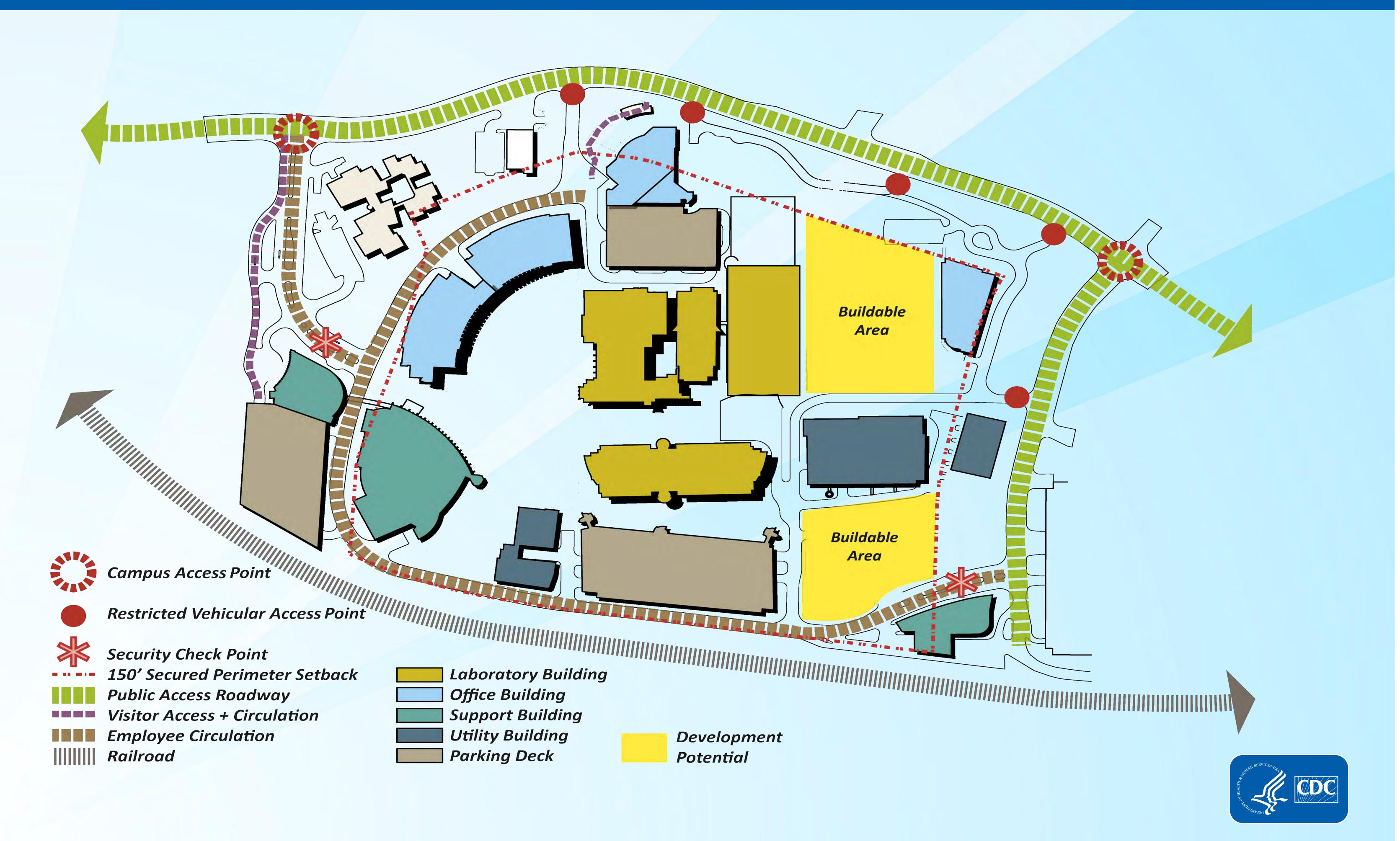
January 17, 2013

Purpose and Need for Project

The CDC is planning to prepare a new Roybal Campus Facilities Master Plan for 2015-2025.

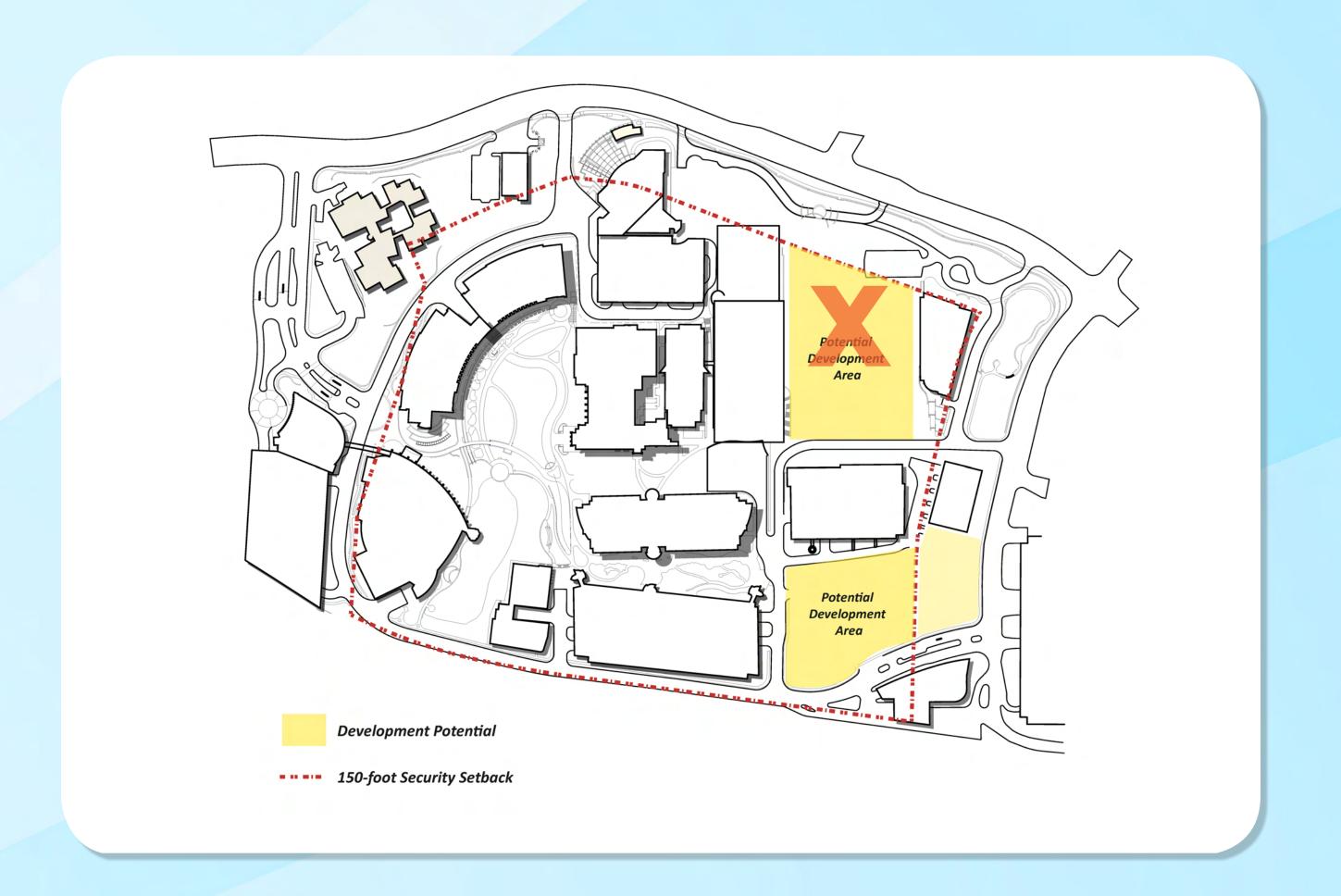
The previous 2000-2009 Master Plan has been successfully implemented. The new Master Plan is needed in order for CDC to be able to respond quickly to new or increased mission requirements through additional campus construction or reconfiguration to meet new public health challenges at home and abroad.

Objectives


- Prepare a new Master Plan for 2015 through 2025 to build upon the completed 2000 to 2009 plan
- Support CDC's mission and strategic vision
- Accommodate the agency's ever changing mission requirements
- Provide a comprehensive roadmap for physical development not a funding mechanism
- Discover opportunities and constraints to develop a balanced carrying capacity
- Explore a range of alternatives to ensure the highest and best use of land, facility and financial resources

Existing Conditions

Existing Conditions

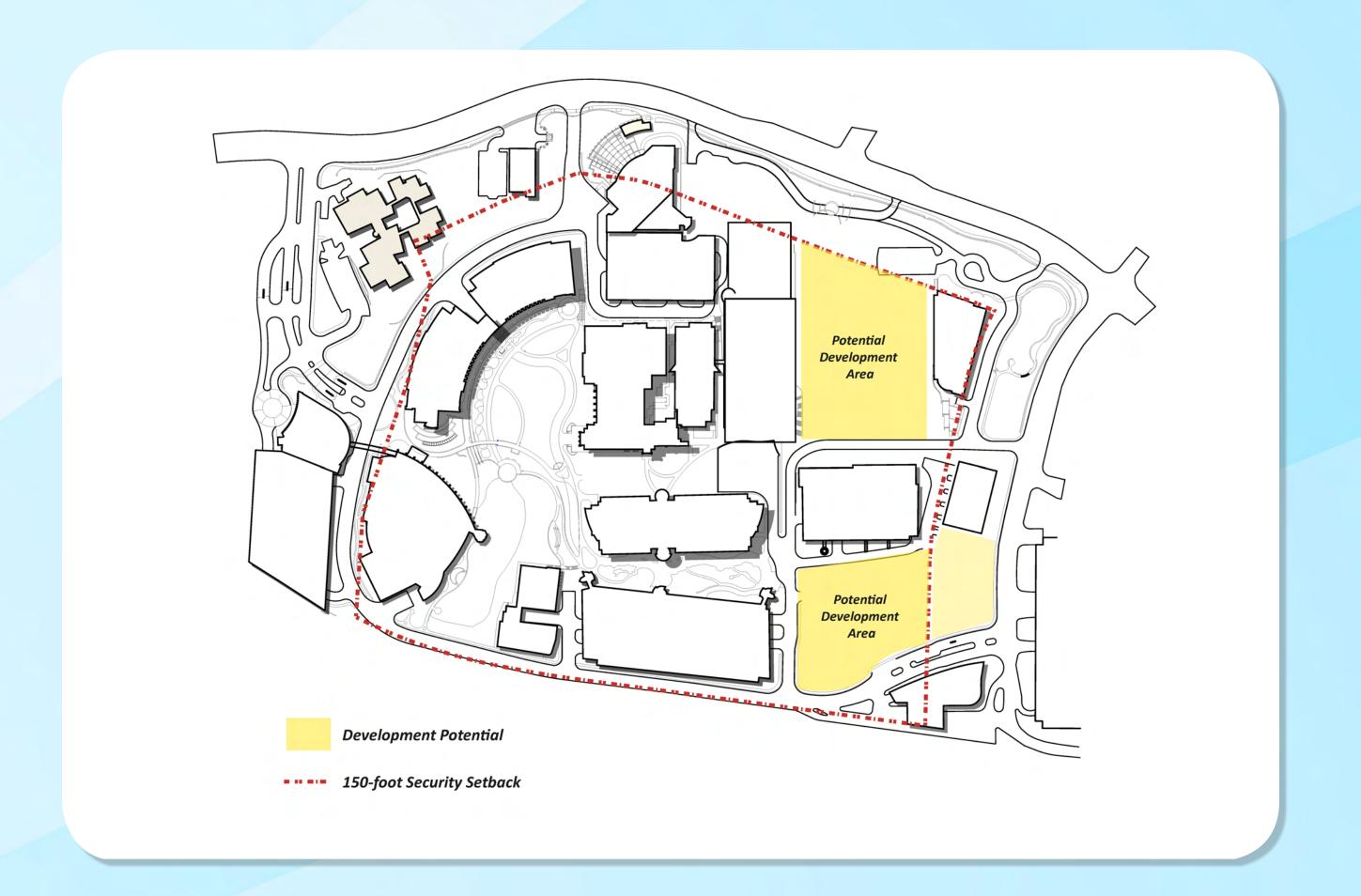

Master Plan Conceptual Alternatives

1. No Action; Status Quo

- Retain 1996 parking cap of 3,300
- Maintain current intensity of uses
- 1% annual campus growth

2. Increase Existing Space Efficiency

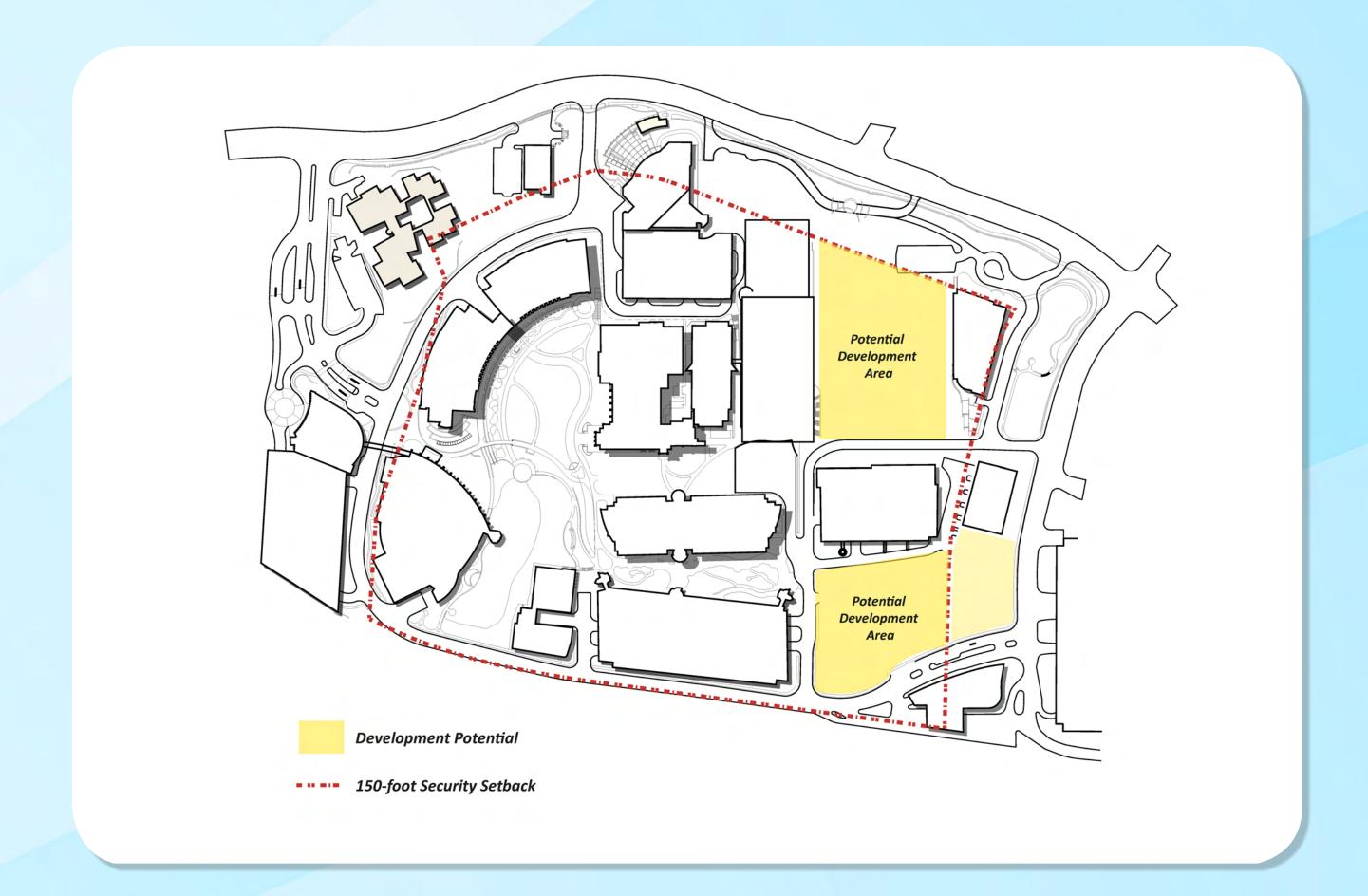
- Maximize existing office efficiency
- Aggressively promote Alternative Workplace
 Solutions (AWS) to add more persons to Campus without major new office or lab construction
- Construct new parking to accommodate AWS growth (size TBD)



Master Plan Conceptual Alternatives

3. Laboratory and Office Mix

- Office buildings (size TBD)
- Laboratory buildings (size TBD)
- Parking (size TBD)
- Sub-alternatives:
 - Two office buildings + one lab + parking deck
 - Two labs + one office building + parking deck

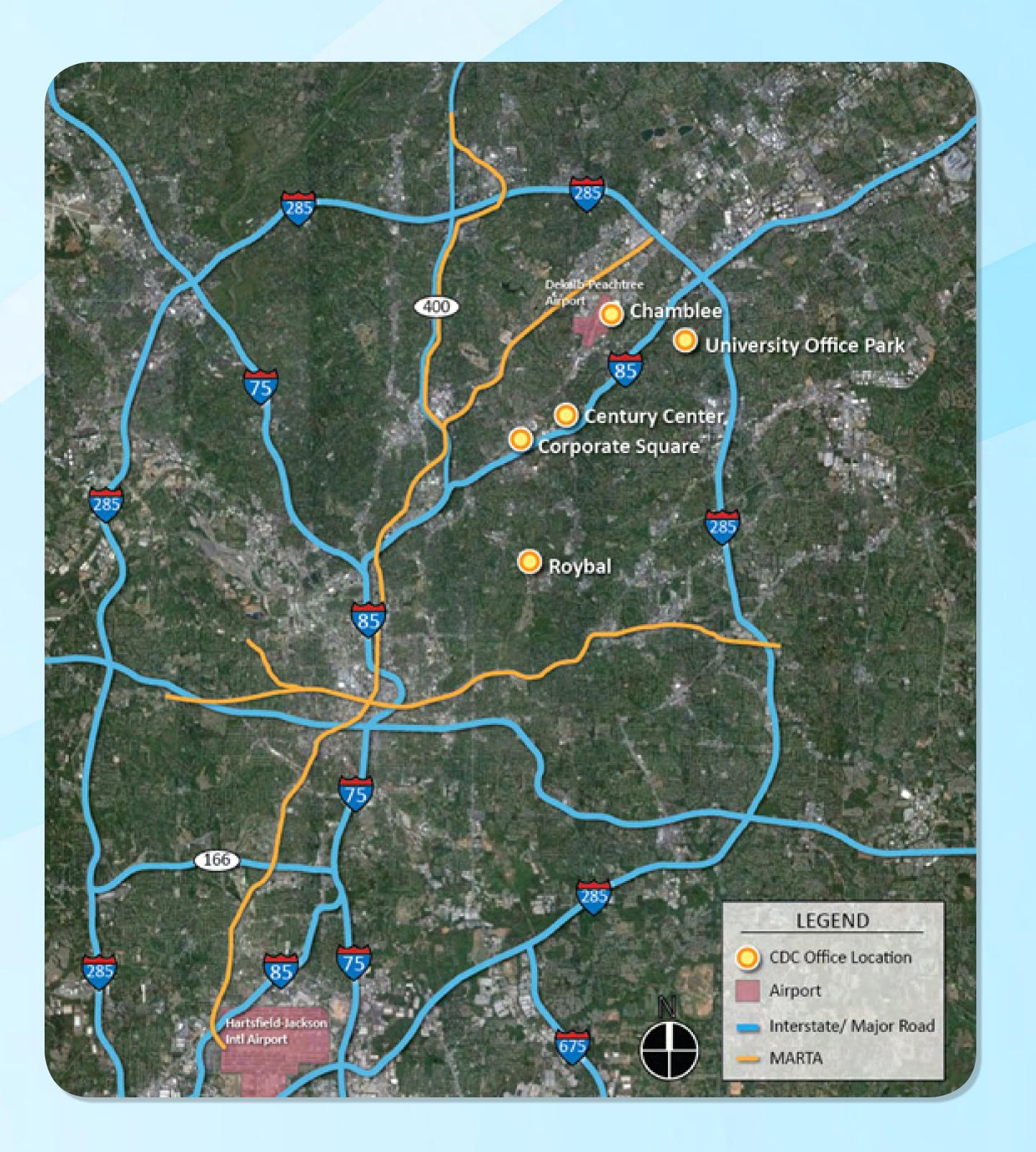

Master Plan Conceptual Alternatives

4. Office Program Focus

- Office construction only (Size TBD)
- No additional laboratory buildings
- New parking (TBD)

5. Laboratory Program Focus

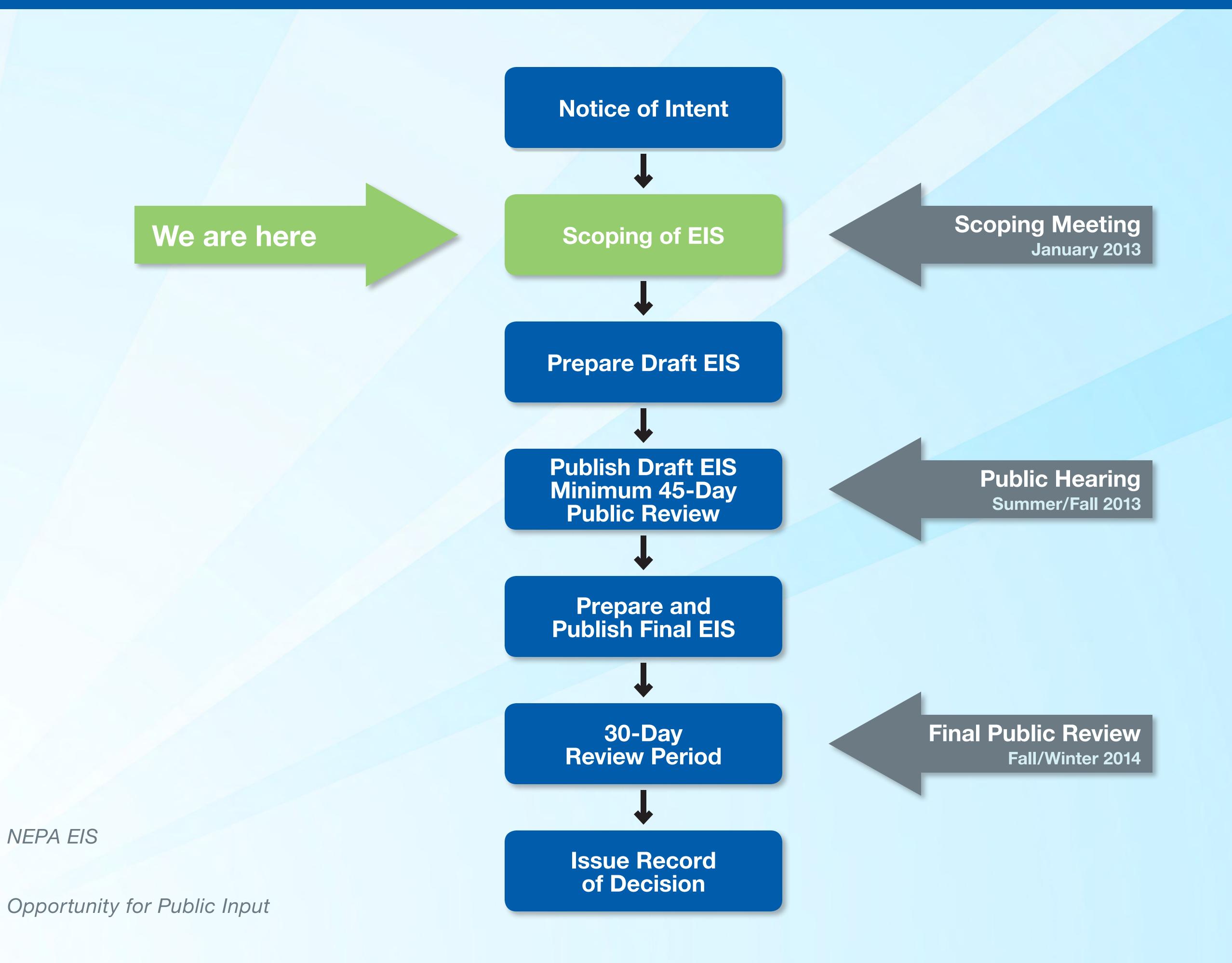
- Laboratory construction only (size TBD)
- No additional office buildings
- New parking (TBD)



Master Plan Conceptual Alternatives

6. Relocation Alternatives

- Organizational relocation options
- Interface with Atlanta Housing Strategy


EIS – What is NEPA?

The National Environmental Policy Act of 1969 (NEPA) establishes national policy for the protection of the environment. NEPA provides for consideration of environmental issues in federal agency planning and decision-making.

- Requires Federal agencies to take environmental factors into consideration when making significant decisions (largescale Campus Development Plans, for example)
- Public disclosure of potential significant impacts to the natural and built environments from Federal activities
- Actively solicits public participation

EIS-What is NEPA?

EIS Key Concerns

Growth in Study Area

Transportation

- Traffic
- Pedestrian Circulation
- Safety
- Transit
- Parking

Air Quality

Infrastructure

- Power
- Water

Waste Stream Management

Cumulative Impacts

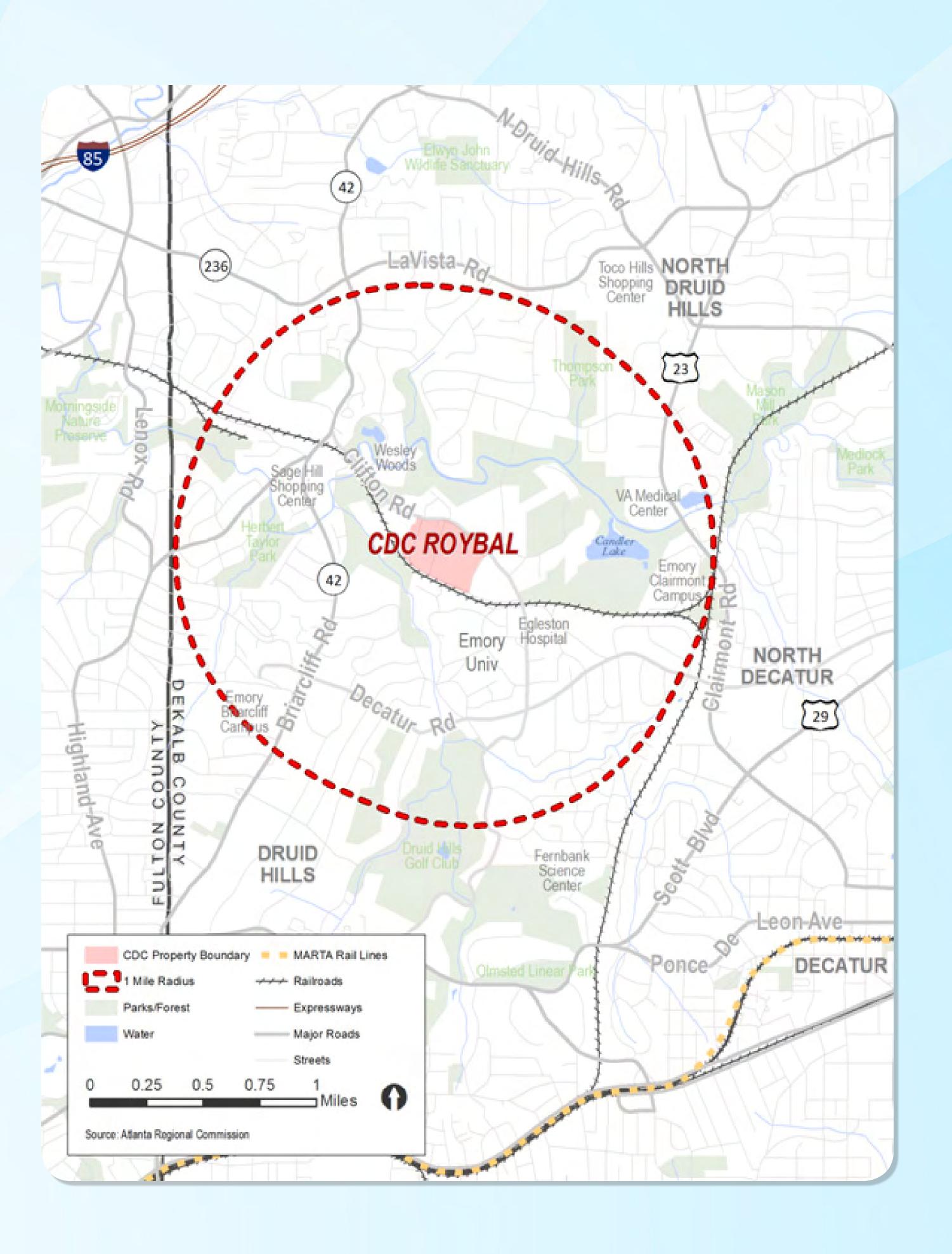
Community Impacts

Resources to be Examined in the EIS to Date

Natural Environment

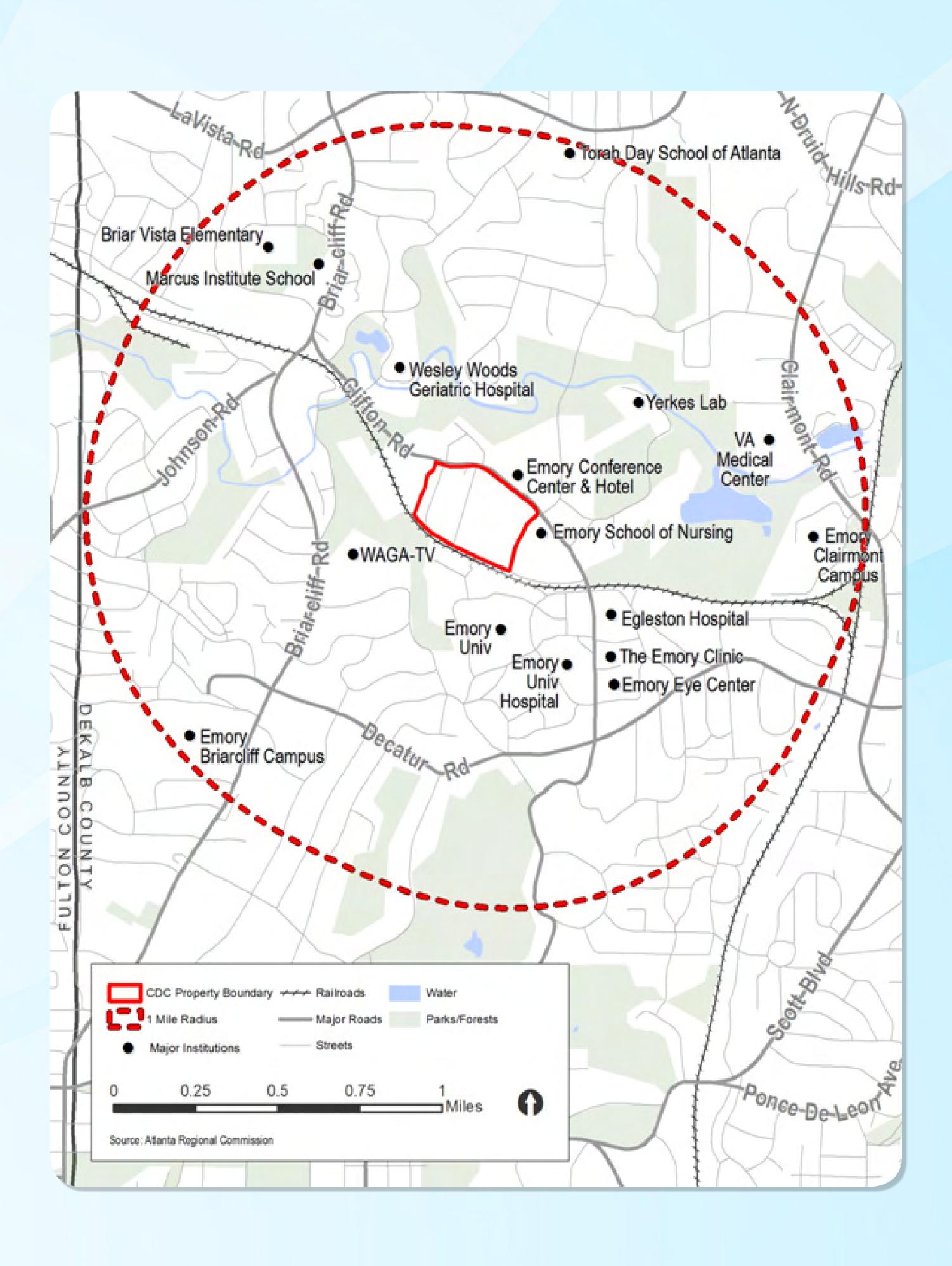
- Air Quality
- Noise
- Geology, Topography, and Soils
- Water Resources
- Vegetation and Wildlife

Infrastructure


- Traffic, Parking and Transit
- Pedestrian Circulation
- Utilities

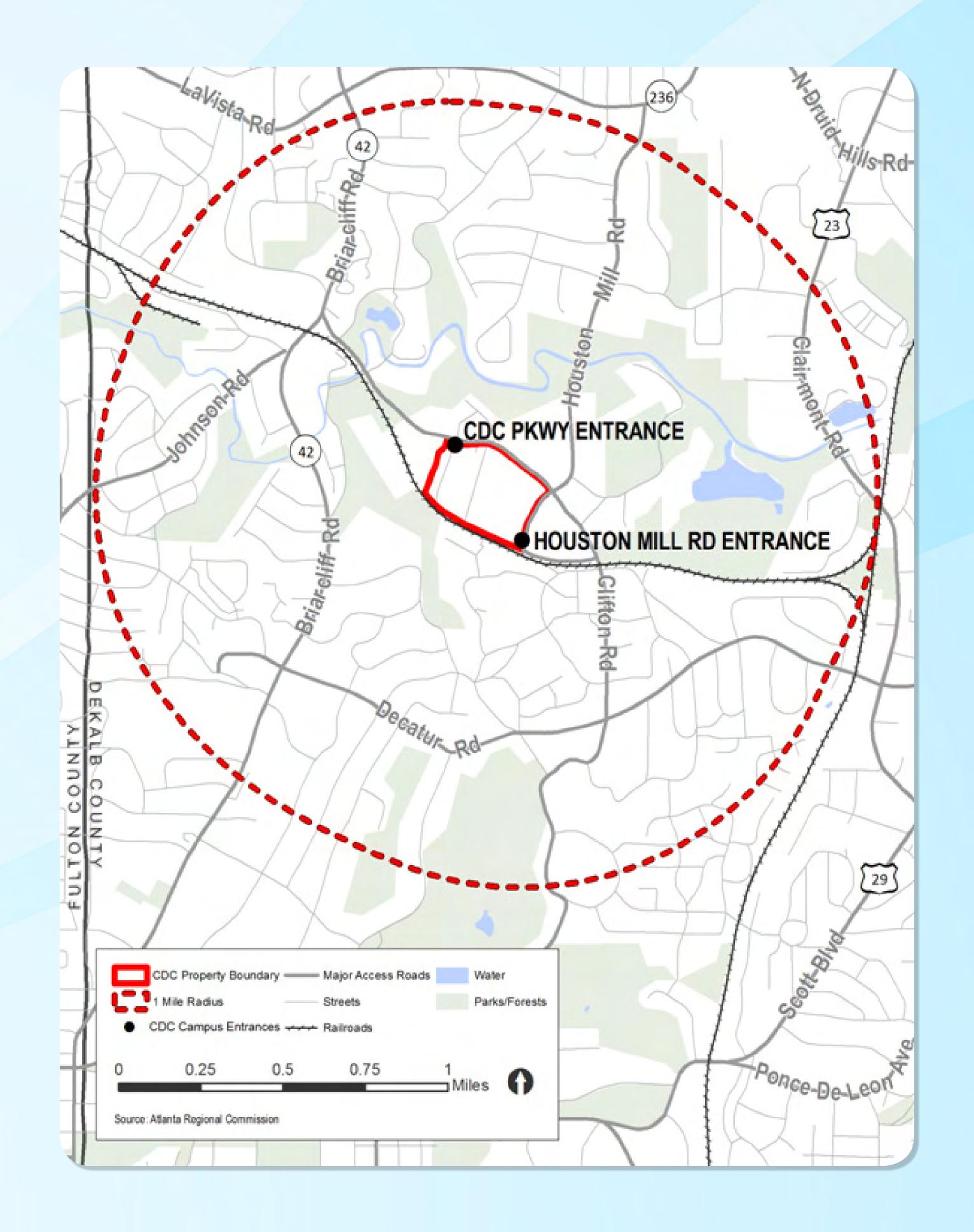
Built Environment

- Land Use and Zoning
- Public Policy
- Population/Demographics
- Economic Conditions
- Community Facilities and Services
- Cultural Resources



EIS Study Area

Growth in the Study Area



Transportation

- Traffic
- Parking
- Pedestrian Circulation
- Transit
- Safety

A detailed Traffic Study will be completed for the EIS.

Scoping Comments

Written comments identified by Docket No. CDC-2012-0013 can be submitted by any of the following methods on or before February 1, 2013:

- Federal eRulemaking Portal:
 http://www.regulations.gov.

 Follow the instructions for submitting comments.
- Mail: George F. Chandler, Senior Advisor,
 Centers for Disease Control and Prevention,
 1600 Clifton Road, N.E., Mailstop A-22
 Atlanta, Georgia 30333
- Instructions: All submissions received must include the agency name and Docket Number. All relevant comments received will be posted without change to http://www.regulations.gov including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov

Notice of Intent Publications

Federal Register

December 17, 2012

Atlanta Journal Constitution

December 20, 2012 — January 14, 2013

The Patch

January 14, 2013 — January 17, 2013

NEPA

NEPA establishes national policy for the protection of the environment. Under NEPA, Federal agencies are required to evaluate the environmental effects of their proposed actions and a range of feasible alternatives to the proposed action, prior to making a decision. NEPA requires Federal agencies to prepare an EIS for actions that could significantly affect the quality of the human environment.

Public Involvement Process and **EIS Milestones**

Record of Decision (ROD)

Scoping Meeting

End of Scoping Meeting
Comment Period

Public Review of Draft EIS

Public Hearing

TBD

Public Review of Final EIS

Fall/Winter 2014

Winter 2014

Scoping Comments

Written comments identified by Docket No. CDC-2012-0013 can be submitted by any of the following methods on or before February 1, 2013:

Federal eRulemaking Portal

http://www.regulations.gov

Follow the instructions for submitting comments.

Mail

George F. Chandler, Senior Advisor Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Mailstop A-22, Atlanta, Georgia 30333

Instructions

All submissions received must include the agency name and Docket Number. All relevant comments received will be posted without change to http://www.regulations.gov, including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov.

For Further Information Contact

George F. Chandler, Senior Advisor Centers for Disease Control and Prevention 1600 Clifton Road, N.E., Mailstop A-22 Atlanta, Georgia 30333 Telephone (404) 639-5153 2015-2025 Facilities Master Plan
Environmental Impact Statement (EIS) for the
Centers for Disease Control and Prevention's (CDC)
Edward R. Roybal Campus
Atlanta, Georgia

Public Scoping Meeting Brochure

JANUARY 17, 2013

Purpose of Scoping

In accordance with the National Environmental Policy Act (NEPA), CDC is conducting public scoping to identify the range of major issues to be addressed relative to the proposed 2015-2025 Facilities Master Plan for CDC's Edward R. Roybal Campus. Scoping is an early and open process for determining the scope of issues to be addressed in the Environmental Impact Statement (EIS). The scoping meeting is a critical element of the scoping process. It allows the public to learn more about the proposed action, provide comments and identify potential issues to be addressed in EIS.

Proposed Action

CDC is preparing a new 2015-2025 Facilities Master Plan for the Edward R. Roybal Campus. The new Master Plan will cover a 10-year planning period and will examine potential growth in Agency Mission, laboratory and laboratory support space, office space and personnel on the Roybal Campus.

The Master Plan will also examine alternative ways of accommodating potential mission change or growth at the Roybal Campus, including new construction of laboratory and office buildings, as well as maximizing the efficiency and utilization of existing space to accommodate potential growth. The Master Plan will evaluate opportunities for future development of the site, taking into consideration constraints and carrying capacity of both the Roybal Campus proper and the surrounding community.

Background

CDC is dedicated to protecting health and promoting quality of life through the prevention and control of disease, injury and disability. CDC, headquartered on Clifton Road in Atlanta, Georgia since 1958, is recognized as the lead Federal agency for protecting the health and safety of people, providing credible information to enhance health decisions, and promoting health through strong partnerships. CDC serves as the national focus for developing and applying disease prevention and control, environmental health, and health promotion and education activities designed to improve the health of the people of the United States.

The previous 2000-2009 Master Plan has been successfully implemented. The new Master Plan is needed in order for CDC to be able to respond quickly to new or increased mission requirements through additional campus construction or reconfiguration in order to meet new public health challenges at home and abroad.

Project Objectives

- Prepare a new Master Plan for 2015 through 2025 to build upon the completed 2000 to 2009 plan;
- Support CDC's mission and strategic vision;
- Accommodate the agency's ever changing mission requirements;
- Provide comprehensive roadmap for physical development, not a funding mechanism;
- Discover opportunities, constraints and balanced carrying capacity; and,
- Explore a range of alternatives to ensure the highest and best use of land, facility and financial resources.

Conceptual Alternatives

CDC will be considering a wide range of conceptual alternatives in the Master Plan, including the following:

- 1 No action/status quo
- 2 Increase existing space efficiency
- 3 Laboratory and office mix
- 4 Office program focus
- 5 Laboratory program focus
- 6 Relocation alternatives

The EIS will provide considerable detail for each conceptual alternative as it is developed and scoping comments are taken into account, and will analyze the impacts of the alternatives under consideration on the natural and built environment.

Potential Areas of EIS Analysis

Potential impact areas to be evaluated in the EIS are as follows:

- Traffic, Parking and Pedestrian Circulation
- Land Use, Zoning and Public Policy
- Cultural Resources
- Social and Economic Impacts
- Water Resources
- Community Facilities and Services
- Noise
- Air Quality
- Utilities
- · Geology, Topography and Soils
- Vegetation and Wildlife
- Cumulative Impacts

Public Scoping Meeting Comment Form

2015-2025 Facilities Master Plan EIS for the Centers for Disease Control and Prevention's (CDC) Edward R. Roybal Campus

Comments		
Contact Information		
Name:		
Address:		
Affiliation:	 	
Phone:		
E-mail:		

Please leave your comment form with us this evening, or written comments can be submitted on or before February 1, 2013. You may submit comments, identified by Docket No. CDC-2012-0013, by any of the following methods:

Mail

George F. Chandler, Senior Advisor Centers for Disease Control and Prevention 1600 Clifton Road, N.E., Mailstop A-22 Atlanta, Georgia 30333

Federal eRulemaking Portal

http://www.regulations.gov

Follow the instructions for submitting comments.

Instructions

All submissions received must include the agency name and Docket Number (CDC-2012-0013). All relevant comments received will be posted without change to http://www.regulations.gov, including any personal information provided. For access to the docket to read background documents or comments received, go to http://www.regulations.gov.

For Further Information Contact

George F. Chandler, Senior Advisor Centers for Disease Control and Prevention 1600 Clifton Road, N.E., Mailstop A-22 Atlanta, Georgia 30333 Telephone (404) 639-5153

Scoping Summary Appendix E Written Comments

Campus Services

Matthew Early, PE Vice President

January 31, 2013

George F. Chandler Senior Advisor Department of Health and Human Services Centers for Disease Control and Prevention 1600 Clifton Road, N.E. Mailstop A-22 Atlanta, GA 30333

Agency:

HHS/CDC

Reference:

Docket No. CDC-2012-0013

Dear Mr. Chandler:

Thank you for inviting Emory's feedback on the proposed 2015-2025 Facilities Master Plan for the CDC's Roybal campus. In reviewing the plans, our top concerns are traffic and visual barriers when looking across our campus to the CDC area.

Based on the six concept alternatives, the proposed construction of new facilities at the CDC Roybal Campus would increase employee population. This increase would drastically increase the annual average daily traffic (AADT) on Clifton Road and in the Clifton Corridor in general. This increase in AADT will further degrade the condition of the roads and increase congestion in surrounding neighborhoods that are already at capacity or failing. We request that no additional parking be made available on the Roybal Campus.

As part of the Environmental Impact Statement, we request that a traffic impact study be conducted to determine how the fulfillment of the master plan would affect traffic in the Clifton Corridor. If the results of that study suggest the impact is substantial, we ask the CDC to support the initiation of projects to relieve main arteries.

Secondly, we request that you consider the visual impact on our campus of any new building constructed on the Roybal Campus. Paying attention to our site boundaries and building placement will make a significant difference to your Emory neighbors.

We look forward to hearing your response to these issues. Thank you.

Sincerely,

Matthew Early Vice President

Campus Services

cc: Michael J. Mandl, Executive Vice President, Finance and Administration, Emory University

SPC 23 3MM 2013

MARK WILLIAMS COMMISSIONER DR. DAVID CRASS DIVISION DIRECTOR

January 17, 2013

George F. Chandler Senior Advisor Centers for Disease Control and Prevention 1600 Clifton Road, NE, Mailstop A-22 Atlanta, Georgia 30333

RE: EIS for Proposed 2015-2025 Facilities Master Plan, Edward R. Roybal Campus, Clifton Road,

Atlanta

DeKalb County, Georgia

FP-130102-001

Dear Mr. Chandler:

The Historic Preservation Division (HPD) has received initial information concerning the above referenced project. Our comments are offered to assist the US Department of Health and Human Services' Centers for Disease Control and Prevention in complying with the provisions of Section 106 of the National Historic Preservation Act of 1966, as amended (NHPA).

Thank you for contacting HPD concerning this potential federal undertaking and initiating the Section 106 consultation process. We look forward to receiving Section 106 compliance documentation from you when it becomes available. Please note that if the federal agency involved intends to use National Environmental Policy Act (NEPA) documentation and procedures to comply with Section 106 of the NHPA in lieu of the procedures set forth in 36 CFR Part 800.3 through 800.6, the federal agency must notify HPD and the Advisory Council on Historic Preservation (ACHP) in advance, pursuant to 36 CFR Part 800.8(c).

For information pertaining to historic properties in the subject areas of potential effect (APE) for the completion of Section 106 or NEPA documentation, please see our website under "Historic Resources" for information concerning the multiple file sources available for research in our office. Unfortunately, we cannot provide this service for you.

If we may be of further assistance, please do not hesitate to contact me at (404) 651-6624 or Elizabeth.shirk@dnr.state.ga.us.

Sincerely,

Elizabeth Shirk

Environmental Review Coordinator

But the first of the state of t

and produce the second of the

Elizabern Shire

From: Wright, Steven [mailto:steven_m_wright@nps.gov]

Sent: Tuesday, January 29, 2013 9:45 AM **To:** Chandler, George (CDC/OCOO/BFO)

Subject: ER-12-0893 - Notice of Intent (NOI) to prepare an Environmental Impact Statement, Public Scoping Meeting, and Request for Comments; 2015-2025 Facilities Master Plan for Edward R. Roybal Campus in Atlanta, GA; Docket Number CDC 2013-2013

CDC-2012-0013

OFFICIAL CORRESPONDENCE VIA ELECTRONIC MAIL NO HARD COPY TO FOLLOW

United States Department of the Interior

NATIONAL PARK SERVICE
Southeast Regional Office
Atlanta Federal Center
1924 Building
100 Alabama St., S. W.
Atlanta, Georgia 30303

IN REPLY REFER TO: (ER-12/0893)

George F. Chandler, Senior Advisor Centers for Disease Control and Prevention 1600 Clifton Road NE. Mailstop A-22 Atlanta, Georgia 30333

Dear Mr. Chandler;

The National Park Service (NPS) has reviewed the Notice of Intent (NOI) to prepare an Environmental Impact Statement, Public Scoping Meeting, and Request for Comments; 2015-2025 Facilities Master Plan for Edward R. Roybal Campus in Atlanta, GA.

Based on the information provided in the December 17, 2012, NOI, the NPS has no comments at this time.

Please contact me at 404-507-5710 if you have any further questions.

Sincerely,

//signed//

Steven M. Wright
Planning and Compliance Division
Southeast Region

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 4
- ATLANTA FEDERAL CENTER
61 FORSYTH STREET
ATLANTA, GEORGIA 30303-8960

January 31, 2013

George F. Chandler Senior Advisor Centers for Disease Control and Prevention 1600 Clifton Road, N.E.., Mailstop A-22 Atlanta, Georgia 30333

Subject:

EPA Scoping Comments on the Environmental Impact Statement for the Proposed 2015-2025 Facilities Master Plan for the Center for Disease Control and Prevention's (CDC) Edward R. Roybal Campus Atlanta, Georgia.

Dear Mr. Chandler:

Pursuant to Section 309 of the Clean Air Act,) and Section 102(2)(c) of the National Environmental Policy Act (NEPA), the U.S. Environmental Protection Agency has reviewed the subject document and participated in the public scoping meeting on January 17, 2012. The Centers for Disease Control and Prevention (CDC) is preparing a Facilities Master Plan for the Edward R. Roybal Campus that covers a 10-year planning period from 2015 to 2025. The proposed Master plan will examines potential growth and development needs associated with the Agency Mission, laboratory and laboratory support space, office space and personnel. The Master Plan will evaluate alternative means of accommodating growth including maximizing the efficient use of the existing space within the Campus.

The proposed Master Plan will build upon a previously completed 2000-2009 Master plan for the Campus. During the previous plan period, the Campus and the surrounding communities underwent substantial growth and development and the new Master Plan will help to provide comprehensive roadmap for physical development and identify potential opportunities and constraints for future growth and land-use within the surrounding area.

The following are EPA's comments and recommendations on the proposed Master Plat that should be considered in the Master Plan and design, construction and maintenance of the Campus.

Alternatives

The proposed project examines a range of conceptual alternatives as a means of identifying the best-use of land, facility space and financial resources. The alternatives include a no-action and five action alternatives. The proposed action alternatives include increasing existing space efficiency, examining laboratory and office mixes, and focusing on an office program, a laboratory program and relocation alternatives.

Recommendation: EPA supports alternatives that focus on increasing the efficient use of existing space and natural resources, with consideration given to the agency mission and staff productivity/wellbeing, and community impacts. Increasing existing space efficiency could also be considered in combination with other action alternatives. The proposed EIS should discuss CDC's mission requirements and ongoing and future needs in an effort to ascertain the best-use of land or facility space. Opportunities to integrate additional green space into the Master Plan should also be examined. Any alternatives that are eliminated from further consideration should be discussed and reasons for their dismissal should be provided.

Water Resources

Aquatic Resources: The CDC Edward Royball Campus is located within a priority watershed (Upper Chattahoochee). South Fork Peachtree Creek is an impaired surface water feature that is also located within the project boundary.

Recommendations: EPA has attached a Water Quality Assessment Report for South Fork Peachtree Creek with the associated cause of impairment and total maximum daily load (TMDL) status for consideration in the planning process. Best management practices for stormwater runoff should be implemented and adhered to during and after construction of any new facilities on-site to prevent increased water volume and sediment load to area waterbodies. Typical BMPs include the use of staked hay bales, silt fences, sediment ponds, mulching and reseeding, and appropriate buffer zones along water bodies. The document should include an erosion control plan or reference Georgia's Erosion and Sediment Control Planning Manual and CDC's commitment to compliance. Compliance may include National Pollutant Discharge Elimination System (NPDES) permit coverage for the construction activity, compliance with the Storm Water Management Program and proper and maintenance of BMPs. BMPs for the design operational life of the facility should also be considered. In addition, EPA encourages CDC to avoid development within any flood zone areas including the 100-year and 500year floodplains. While flood zone areas are within the vicinity of the project boundary, they appear to be located outside the Roybal Campus.

Green Infrastructure and Pollution Prevention

Opportunities for Incorporation and Use of Green Infrastructure Concepts: Green building practices should be considered that provide an opportunity to create environmentally-sound and resource-efficient buildings by using an integrated approach

to design. Green buildings promote resource conservation, including energy efficiency, renewable energy, and water conservation features. It also takes into consideration environmental impacts and waste minimization, reduces operational and maintenance costs; and addresses issues such as transportation and other community infrastructure systems. Given the historic drought levels and the national energy issues, resource conservation measures that minimize impacts from major federal facilities are important.

Recommendation: The proposed project should include resource conservation and pollution prevention measures that will be incorporated in the project design, and operation of CDC. Over the life of the facilities reduced operating costs and competitive first costs can be expected, while protecting the environment. Specific recommendations are listed below.

- Use of natural ventilation and lighting in the design of the facility can result in
 energy conservation and cost savings. Using efficient lighting can attain savings
 in electricity. For example, compact fluorescent lamps consume much less
 electricity, have a longer life, reduce air pollution, and produce long-term cost
 savings in comparison to incandescent bulbs. Efficient lighting is now available
 for almost any application and most provide the same amount of light as older
 systems, with less glare, noise, better color, and no flickering.
- Installation of energy efficient windows and doors (for example, low emissivity or reflective glass) also conserve energy. Consider using passive solar cooling and/or heating where practicable. For example, "pre-cooling" a building at night when outside temperatures are lower reduces demand for air conditioning during the day when electricity rates are higher.
- Providing adequate shading of glassed areas by trees or building overhangs also helps save energy. Strategically placed trees provide shade around buildings, thereby reducing energy requirements. In addition, trees also fix atmospheric carbon dioxide, the greenhouse gas of most concern. They also serve as a buffer between different land-uses.
- Low-flow toilets and shower heads should be installed in new facilities, promoting water conservation and cost savings. Landscaping should be designed to minimize water use. Use of greywater for irrigation purposes should be considered.
- Existing and any proposed changes to the waste management strategies for the facility should also be discussed. For example, is the waste going to be managed on-site or will an existing landfill / incinerator be used? EPA recommends examining wastes produced by the Campus and proposed facilities to determine ways to prevent, reduce, and recycle that waste. In addition, procurement of recycled goods is necessary to stimulate markets and complete the recycling "loop". If CDC is not already doing so, EPA encourages CDC, consider a waste recycling program and as a consumer and purchaser of goods and services, to

make purchasing decisions with this in mind. Specifications for the use of recycled goods may be incorporated into contracts for goods and services. Yard waste composting should also be taken into consideration. By decreasing the amount of solid waste sent to landfills, a composting operation can reduce disposal costs. At the same time, it results in the production of a beneficial soil conditioner which can be used for landscape maintenance to enhance growth of plants.

In addition to the recommendations above, we are providing a list of website resources below and a list of Agency subject matter contacts upon request.

Website Resources

US Green Building Council http://www.usgbc.org/DisplayPage.aspx?CategoryID=19
US EPA www.epa.gov/opptintr/greenbuilding
Environmental Design and Construction www.edcmag.com

Air Quality -

The document should assess existing air quality conditions in terms of the National Ambient Air Quality Standards (NAAQS) for criteria pollutants. EPA has set National Ambient Air Quality Standards for six principal "criteria" pollutants. These pollutants are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Based on our review, the project is located in an area which is currently designated as marginal for Ozone and in attainment/unclassifiable for particulate matter.

Recommendations: EPA recommends that the project contractors implement overall diesel emission reduction activities through various measures such as: switching to cleaner fuels, retrofitting equipment with emission reduction technologies, repowering older engines with newer cleaner engines, replacing older vehicles, and reducing idling on-site through operator training and/or contracting policies. EPA can assist in the future development or implementation of these options. In addition, EPA encourages CDC to work with Emory and surrounding neighbors to address transportation options to reduce vehicular congestion (i.e., improved bus and light rail services).

Noise

Noise impacts should be predicted for the no build and the build alternatives. The NEPA evaluation should also estimate any projected incremental increases of noise. Generally, EPA considers all increases over 10 dBA at any given noise level as a significant increase. Typical noise levels produced by construction equipment within 50 feet, which are available in the literature, should be disclosed. The distance to the closest residence/receptors and the project construction time (months, years) along with project construction periods for major components of the project should also be estimated in order to help assess the magnitude of the construction noise impact. This information will allow potentially affected residents, employees and businesses to approximate the

duration and degree of noise disturbance during construction. The use of a hush houses or similar equipment should be considered around any stationary equipment to shield noise at its source, and all motorized equipment should be properly tuned to the manufacturer's specifications for additional source reduction. Construction equipment should be equipped with noise attenuation devices, such as mufflers and insulated engine housings, wherever possible. Noise abatement should be considered when noise impacts from construction approaches the Noise Abatement Criteria or if they meet or exceed the existing noise levels by 10 dBA (especially if the existing noise levels are 50 dBA and above).

Environmental Justice and Children's Health

Pursuant to the executive order 12898 "Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations" (February 11, 1994) and its accompanying memorandum, the EIS should examine the effects of implementing the proposed alternatives within the Master Plan on minority and/or low-income populations. In addition, the EIS should consider children' health issues pursuant to the executive order 13045: Protection of Children from Environmental Health Risks and Safety Risks.

Recommendations: The EIS should identify, analyze and address, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority and low-income populations. Similarly, children's health issues should be considered. The EIS should include a demographics analysis of the affected project area. Some of this information can be found at the U.S. Census Bureau. EPA has attached an American Community Survey Report for the project area that includes information on the project area. Publically available EPA Webbased tools like EJView: http://epamap14.epa.gov/ejmap/entry.html and NEPAssist: http://nepassisttool.epa.gov can currently be used to conduct preliminary screening level reviews. This information should be used in conjunction with information acquired during the public involvement and ground verification processes. The public involvement process should continue to provide opportunities for communities to help identify potential effects, and minimization and mitigation measures. A summary of the communities' comments and the agencies response to those comments should be included in the EIS. EPA notes that effort to improve access to public meetings, official documents, and notices to affected communities are being made. Efforts to minimize and mitigate adverse impacts should be outlined or analyzed in EISs, whenever feasible, should address significant and adverse environmental effects of proposed federal actions on minority and /or low income communities and children.

Archeological and Historical Sites

The EIS should identify potential archeological sites and historic properties within the project area. Based on a preliminary screen of the nearby area, at least three historic sites districts (i.e., Emory University District, Emory Grove Historic District and University Park /Highlands/Emory Estates Historic District are located within a mile of proposed project site. If the project has the potential to impact these resources, the EIS should document that proper coordination with the State Historic Preservation Office (SHPO)

and/Tribal Historic Preservation Officer has occurred. Compliance with Section 106 of the National Historic Preservation Act should be discussed within the NEPA process. The EIS should discuss any avoidance or minimization measures and procedures for events such as unearthing archaeological sites during prospective construction. Such procedures should include work cessation in the area until the SHPO and/ the Tribes approve of continued construction.

Cumulative and Indirect Impact

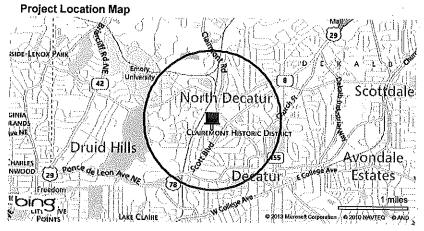
The NEPA document should define and estimate the indirect and cumulative impacts associated with the proposed project. Indirect effects are caused by the action and are later in time or farther removed in distance, but are still reasonably foreseeable. Indirect effects may include growth inducing effects and other effects related to induced changes in the pattern of land use, population density or growth rate, and related effects on air and water and other natural systems, including ecosystems (40 CFR § 1508.8). Cumulative impact is the impact on the environment, which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of the entity that undertakes the action. Cumulative impacts can result from individually minor, but collectively significant actions taking place over a period of time. (40 CFR § 1508.7)

Thank you for the opportunity to comment on this project. If you have any questions or require technical assistance, please contact Ntale Kajumba of my staff at (404) 562-9615.

Sincerely,

Heinz J. Mueller, Chief NEPA Program Office

Office of Environmental Accountability


Attachments: Maps and Reports

SEPA United States Instruction

http://nepassisttool.epa.gov/NEPAVEtoolsPublic/report/analysis.aspx

NEPAssist Report

1600 Clifton Rd NE, Atlanta, GA 30329

Geographic coordinates:

POINT (33.799524,-84.325014) with buffer 1 mile

Note: The information in the following reports is based on publicly available databases and web services. The National Report uses nationally available datasets and the State Reports use datasets available through the <u>EPA Regions</u>. Click on the hyperlinked question to view the data source and associated metadata.

National Report 🍄

Project Location	33.799524,-84.325014
Within 1 mile of an Ozone 8 - hr Non-Attainment Area?	<u>yes</u>
Within 1 mile of a PM2,5 Non-Attainment Area?	<u>no</u>
Within 1 mile of a Lead Non-Attainment Area?	no
Within 1 mile of a Federal Land?	<u>no</u>
Within 1 mile of an impaired stream?	yes
Within 1 mile of an Impaired waterbody?	no no
Within 1 mile of a waterbody?	yes
Within 1 mile of a stream?	<u>yes</u>
Within 1 mile of an NWI wetland?	<u>click here</u> May take several minutes
Within 1 mile of a Toxic Substances Control Act (TSCA) site?	<u>no</u>
Within 1 mile of a RADInfo site?	no .
Within 1 mile of a Brownfields site?	no
Within 1 mile of a Superfund site?	<u>no</u>
Within 1 mile of a Toxic Release Inventory (TRI) site?	<u>no</u>
Within 1 mile of a water discharger (NPDES)?	<u>no</u> .
Within 1 mile of an air emission facility?	<u>ves</u>
Within 1 mile of a hazardous waste (RCRA) facility?	yes
Within 1 mile of a school?	yes
Within 1 mile of an airport?	<u>no</u>
Within 1 mile of a hospital?	<u>ves</u>
Within 1 mile of a designated sole source aquifer?	по
Within 1 mile of a historic property on the National Register of Historic Places?	<u>yes</u>

Georgia Report ∜ EJView Reports∜

Last updated on Thursday, January 31, 2013

Watershed Assessment, Tracking & Environmental ResultS

You are here: <u>EPA Home Water WATERS</u> <u>Water Quality Assessment and TMDL Information</u>
Waterbody Quality Assessment Report

Return to home page

On This Page

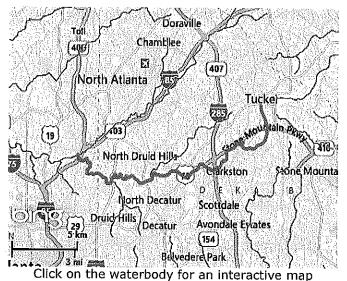
- Causes of Impairment
- TMDLs That Apply to This Waterbody
- Previous
 Causes of
 Impairment
 Now Attaining
 All Uses

State: Georgia
Waterbody ID:
GAR031300011207
Location: Headwaters
To Peachtree Creek,
Atlanta

State Waterbody
Type: River

EPA Waterbody
Type: Rivers and

Streams

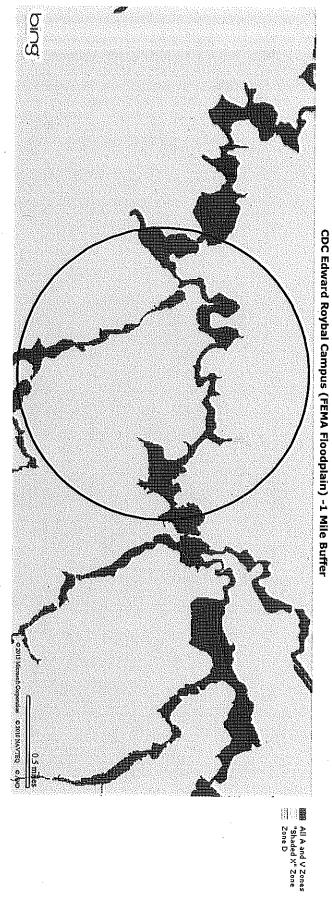

Water Size: 15 Units: miles

Watershed Name: Upper Chattahoochee

Waterbody History Report

Data are also available for these years: 2008 2006 2004 2002 2000

2010 Waterbody Report for South Fork Peachtree Creek



Features

- About This Database (Integrated Report)
- Assessing Water Qua (Questions and Answ
- Integrated Reporting Guidance
- Previous National Wa Quality Reports
- EnviroMapper for Wa
- AskWATERS
- EPA WATERS Homep
- Exchange Network
- Assessment Databas
- Statewide Statistical Surveys
- How's My Waterway
 Search tool
- Pollution Categories
 Summary Document

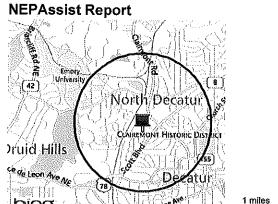
Causes of Impairment for Reporting Year 2010

Description of this table Cause of Impairment State TMDL Development Cause of Impairment Group Status Benthic Macroinvertebrates Cause Unknown - Impaired TMDL needed Bioassessments Biota Fecal Coliform Pathogens TMDL completed Cause Unknown - Impaired Fish Bioassessments TMDL needed Biota

http://nepassisttool.epa.gov/nepassist/printmap1.html

SEPA (misoairental fretection

http://nepassisttool.epa.gov/NEPAVEtoolsPublic/report/Drill_local.aspx?



Last updated on Thursday, January 31, 2013

Report question: Withi	n 1 mile of a historic	property on the N	lational R	egiste.	r of Historia
Places? yes					
Modify question by enter	ing a new buffer distar	ice and unit for the	selected	study a	геа:
1	miles	Submi	t Query		
Features within Study	Area	•			
Features found: 3					
Name			Distance	Ur	nits
Emory University District				.64	miles
Emory Grove Historic Dist	rict			.68	miles
Emory Grove mistoric bist		Historic District			

SEPA United States Littra Agency

http://nepassisttool.epa.gov/NEPAVEtoolsPublic/report/Drill.aspx?

Features within Study Area

Features found: 3

Name
WD Thompson Park
Johnson Park
Adams Park

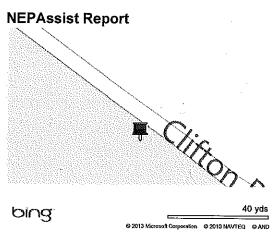
Miles

Submit Query

Units

Units

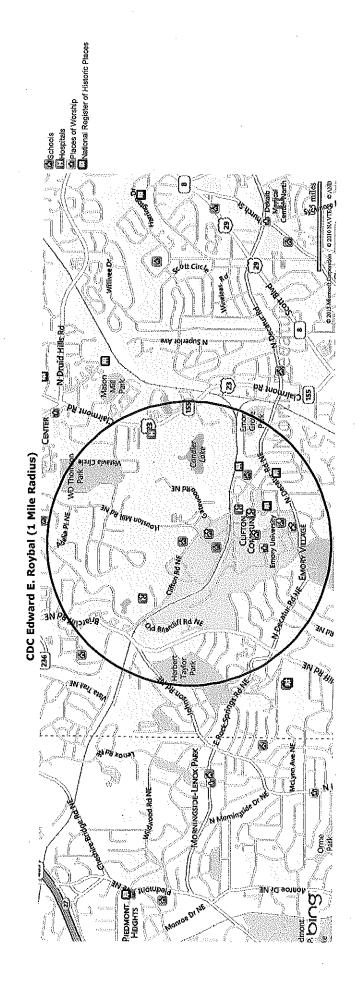
66 miles


78 miles

87 miles

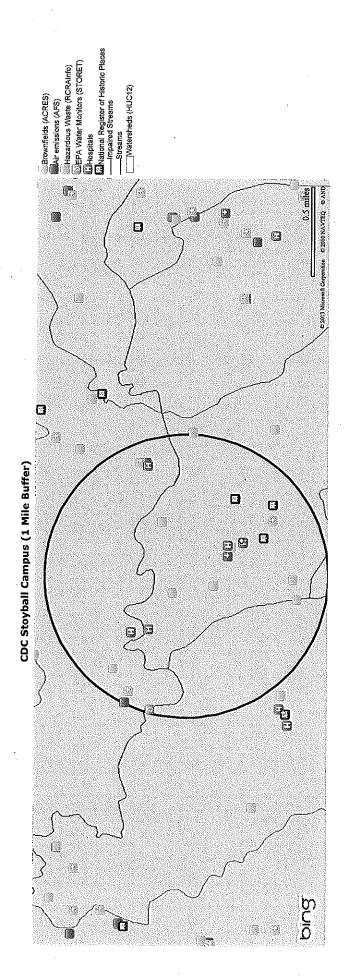
Report question: Within 1 mile of a National, State, or Local forest or park? yes Modify question by entering a new buffer distance and unit for the selected study area:

Last updated on Thursday, January 31, 2013


http://nepassisttool.epa.gov/NEPAVEtoolsPublic/report/Drill_local.aspx?

, , , , , , , , , , , , , , , , , , , ,	nd unit for the selected study	area.
1 meters	Submit Query	
Features within Study Area		
Features found; 8	•	
Name	Distance L	nits
Center for Rehabilitation Medicine	.41	mile
Wesley Woods Intermediate Care Facility	.42	· mile
Children's Healthcare of Atlanta at Egleston	.47	mile
Wesley Woods Geriatric Hospital	.51	mile
Aidmore Hospital	.52	mile
Ronald McDonald Childhood Cancer Clinic	.53	mile
Emory University Hospital	.53	mile
Veterans Hospital	.84	mile

Last updated on Thursday, January 31, 2013


NEPAssist: Print Map

1/31/2013

NEPAssist: Print Map

1/31/2013

EJView ACS Summary Report

Location: -84.325014,33.799524

Study Area: 1 mile around the point location

	2006 - 2010 ACS Estimates	Percent	MOE (±)
Population 25+ by Educational Attainment Total			
Less than 9th Grade	5,319 ::::::::::::::::::::::::::::::::::::	100%	302
9th - 12th Grade, No Diploma	99	2%	143
High School Graduate	161 BD\$	3%	158
Some College, No Degree	352	7%	138
Associate Degree	661	12%	168
Bachelor's Degree or more	170	3%	148
POPULATION AGE 5+ YEARS BY ABILITY TO SPEAK ENGLI	4,046	76%	284
Total		4000/	
Speak only English	10,500	100%	853
Non-English at Home ¹⁺²⁺³⁺⁴	7,886	75%	709
Speak English "very well"	2,615	25%	445
² Speak English "well"	1,823	17%	345
3Speak English "not well"	620	6%	202
⁴Speak English "not at all"	153	1%	180
3+4Speak English "less than well"	20	0% ****	140
2+3+4Speak English "less than very well"	173 792	2% 8%	182
POPULATION AGE 5+ YEARS BY LANGUAGE SPOKEN AT I		O%	238
Total	N/A	N/A	N/A
Speak only English	N/A N/A	N/A	whether the street and a second second
Non-English Speaking	N/A	The second secon	N/A
Population by Place of Birth for the Foreign-Born	N/A	N/A	N/A
Total	N/A	N/A	N/A
Europe	N/A N/A	N/A	Service Commence of the Commence of
Asia		N/A N/A	N/A N/A
Africa	N/A	N/A N/A	ates than our wealthing he had a
Oceania	N/A	N/A	N/A N/A
Americas	N/A	N/A N/A	N/A N/A
Households by Household Income in 1999		IVA	IVA
Household Income Base	3,129	100%	139
<\$15,000	434	14%	างย 162
\$15,000 - \$25,000	275	9%	162 140
\$25,000 - \$50,000	515	16%	GUST FIT A SECTION OF A PROCESS WHEN
\$50,000 - \$75,000	502	16%	147 133
\$75,000+	1,403	45%	133 186
Occupied Housing Units by Tenure Total			
ngrammal in instance in the contract of the co	3,129 Barrana kanada kanad	100%	139
Owner Occupied Penter Occupied	1,545	49%	128
Renter Occupied	1,58 4	51%	142

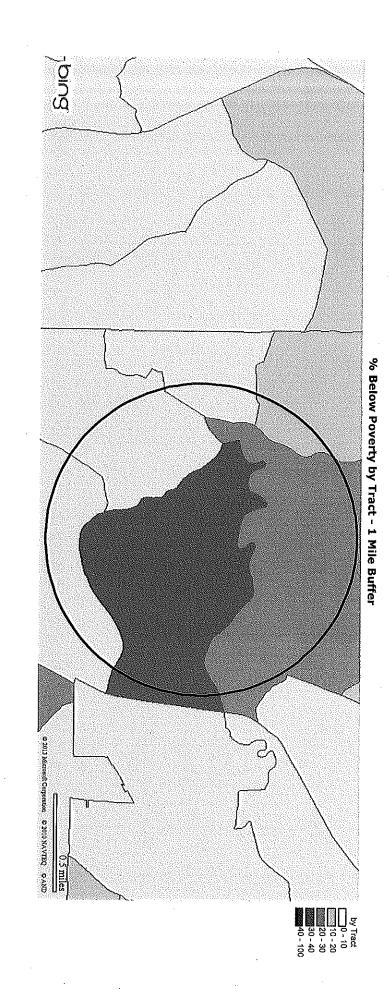
Data Note: Detail may not sum to totals dues to rounding. Hispanic population can be of any race. N/A means not avialable.

2006-2010 ACS 5-year Estimates: The American Community Survey (ACS) summary files provide nation-wide population and housing characteristic data at all Census summary levels down to the Block Group level. This data was collected between January 1, 2006 and December 31, 2010. ACS replaces the decennial census sample data, and is not the 2010 Census population counts data. (http://www.census.gov/acs/www/#fragment-3)

Margin of error (MOE): The MOE provides a measure of the uncertainty in the estimate due to sampling error in the ACS survey. Applying the MOE value yields the confidence interval for the estimate. For example, an estimate value of 50 and +/- MOE of 5 means the true value is between 45 and 55 with a 90 percenet certainty (http://www.census.gov/acs/www/Downloads/data_documentation/Accuracy/MultiyearACSAccuracyofData2010.pdf). Maximum MOE is shown for each value within study area.

Source: U.S. Census Bureau, American Community Survey (ACS) 2006 - 2010.

EJView Census 2010 Summary Report



Location: -84.325014,33.799524

Study Area: 1 mile around the point location

White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent	Study Area: 1 mile around the point location	
Population Density (per sq. mile) 3,976 Minority Population 3,130 3,	Summary	Census 2010
Minority Population 3,130 % Minority Households 28% Households 3,485 Households 3,808 Land Area (m²) 7,212,932 % Land Area 98% Water Area (m²) 120,491 % Water Area 2% Population by Kace Number Percent Total 11,072 — Population Reporting One Race 10,000 98% White 8,201 74% Black 940 9% Whater Area 15 0% American Indian 20 0% Asian 1,533 14% Pacific Islander 5 0% Some Other Race 95 11% Population Reporting Two or More Races 272 2% Total Hispanic Population 10,591 9% White Alone 9,492 3% Black Alone 924 3% Black Alone 1,529 14% Non-Hispanic Asian	and the first tracking of the result of the following of the control of the contr	11,072
% Minority 28% Households 3,485 Households 3,808 Land Area (m²) 7,212,932 % Land Area 98% Water Area 98% Water Area (m²) 120,491 % Water Area 22% Population Seporting One Race 10,000 9,8% White 8,201 77.4% Black 946 9% American Indian 20 0% Asian 1,533 14% Pacific Islander 5 0% Some Other Race 95 11% Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Population Reporting Two or More Races 272 2% Total Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 3% Alback Alone 14 0% Alback Alone 1,529 14%		3,976
Households 3,485 Households 3,485 Households 3,486 Households 3,486 Households 3,486 Households 3,486 Households 3,806 Land Area (m²) 7,212,932 % Land Area (m²) 120,491 296% Water Area (m²) 120,491 296	 Make a set to construct the set to the construction of the construction of the construction of the construction of the construction. 	3,130
Housing Units 3,800 Land Area (m²) 7,212,932 % Land Area (m²) 120,491 % Water Area (m²) 120,491 % Water Area (m²) 120,491 % Water Area 12% Population by Race Number Percent Total 11,072 —— Population Reporting One Race 10,800 986% White 8,201 74% ß Black 946 9% American Indian 20 0% Asian 1,533 144% Pacific Islander 55 0% Some Other Race 95 15% Some Other Race 95 15% Population Reporting Two or More Races 272 Total Hispanic Population 10,681 97% White Alone 19,642 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 14 0% Non-Hispanic Asian Alone 1,629 144% American Indian Alone 1,629 145% Population 10,681 924 8% American Indian Alone 1,629 145% Population Some 1,629 15% Population Some 1,629 165% Population Some 1,	the control of the co	28%
Land Area (m²) 7,212,932 % Land Area (m²) 98% Water Area (m²) 120,491 % Water Area 22% Population by Race Number Percent Total 11,072 — Population Reporting One Race 10,800 98% White 8,201 74% Black 946 9% American Indian 20 0% Asian 1,533 14% Pacific Islander 5 0% Some Other Race 95 1% Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Hispanic Population 381 3% Total Non-Hispanic Population 10,691 97% White Alone 7,842 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0%	The ANTHART SACRETERS IN THE RESIDENCE OF A PROPERTY OF A PROPERTY OF A PARTY	3,485
% Land Area 96% Water Area (m²) 120,491 % Water Area (m²) 120,491 % Water Area (m²) 120,491 % Water Area Percent Total 11,072 Population Reporting One Race 10,800 96% White 8,201 74% Black 946 9% American Indian 20 0% Aslan 1,533 14% Pacific Islander 5 0% Some Other Race 95 11% Population Reporting Two or More Races 272 2% Total Indian Alone reporting Two or More Races 272 2% Total Non-Hispanic Population 1,681 3% Total Non-Hispanic Population 10,681 97% White Alone 924 3% Black Alone 924 3% American Indian Alone 1,629 14% Non-Hispanic Asian Alone 1,529 14% Other Race Alone 28 0% <t< td=""><td></td><td>3,806</td></t<>		3,806
Water Area (m²) 120,491 % Water Area 2% Population by Race Number Percent Total 11,072 —— Population Reporting One Race 10,800 98% White 8,201 74% Black 946 9% American Indian 20 0% Asian 1,533 14% Pacific Islander 5 0% Some Other Race 95 1% Population Reporting Two or More Races 272 2% Population Population 381 3% Total Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number	response salada a sela salada sanca a como a co	7,212,932
% Water Area Number Percent Total 11,072 — Population Reporting One Race 10,800 98% White 3,201 74% Black 946 9% American Indian 20 0% Asian 1,533 14% Pacific Islander 5 0% Some Other Race 35 1% Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Hon-Hispanic Population 381 3% Total Non-Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 2 8 Two or More Races Alone 2 8 Population by Sex Number Percent		98%
Population by Race Number Percent Total 11,072 —— Population Reporting One Race 10,800 98% White 8,201 74% Black 946 9% American Indian 20 0% Asian 1,533 14% Pacific Islander 5 0% Some Other Race 95 1% Population Reporting Two or More Races 272 2% Total Hispanic Population 361 3% Total Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 3% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 28 0% Population by Sex Number Percent Male 5,975 54% Po	inace and a compress of the Angle of the Control of	120,491
Total	% Water Area	2%
Total	Population by Race	Number Descent
Population Reporting One Race 10,800 98% White 8,201 74% Black 946 9% American Indian 20 0% Asian 1,533 14% Pacific Islander 5 0% Some Other Race 95 1% Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Non-Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 8% American Indian Alone 1,529 14% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Age 0-4 343 3% Age 0-17 1,079 10%		
White 8,201 74% Black 946 9% American Indian 20 0% Asian 1,533 14% Pacific Islander 5 0% Some Other Race 95 11% Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Non-Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-1	The section of the first of the section of the sect	БЕК СРУГИ БИРСТИРИ СИСТИНИ И ЛИТИРИ В БИРСЕ В ВИТЕРИРИМИ В ВИТИРИМИ В
Black 946 9% American Indian 20 0% Asian 1,533 14% Pacific Islander 5 0% Some Other Race 95 11% Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Onn-Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-17 1,079 10% Age 65+ 1,089 10% Households by Te		The state of the s
American Indian 20 0% Asian 1,533 14% Pacific Islander 6 0% Some Other Race 95 1% Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Non-Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 65+ 1,089 10% Households by T	TWO NAMES AND A REPORT OF THE PROPERTY OF THE	reservation of the Control of the Co
Asian 1,533 14% Pacific Islander 5 0% Some Other Race 95 11% Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Non-Hispanic Population 10,691 97% White Aione 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 14,00% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 29% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 44%		
Pacific Islander 5 0% Some Other Race 95 1% Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Non-Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 22% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-1 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434<	A PROMOTE AND THE CONTROL OF THE PROMOTE AND A PROMOTE AND	Control to the Albert and an English systems in the appears and the most of the english of the english and the
Some Other Race 95 1% Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Non-Hispanic Population 10,691 97% White Alone 7,842 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,097 46% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 0,48 0,49 0,40		and the control of the
Population Reporting Two or More Races 272 2% Total Hispanic Population 381 3% Total Non-Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	CANNOT BE REPORTED BY A STATE OF THE PROPERTY	
Total Hispanic Population 381 3% Total Non-Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	The property of a second control of the seco	and the control of th
Total Non-Hispanic Population 10,691 97% White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 0 Owner Occupied 1,434 41%	 48 de Source de Companyo de la contraction de la Salvancia de la color de la	ACCESS OF THE ACCESS AND ACCESS AND ACCESS AND ACCESS AND ACCESS
White Alone 7,942 72% Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 017 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	Total Non-Hispanic Population	The state of the s
Black Alone 924 8% American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	White Alone	lin Aliker ir 1800 tilliga ett Villet i engalen Saturden antallatur kan manna anna ett ett i transpalaren man
American Indian Alone 14 0% Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	Black Alone	
Non-Hispanic Asian Alone 1,529 14% Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	American Indian Alone	e kalika bali 1946 bila bara gara kali di kara Kiraka ya Karaba Alimbar e Kira bara bara bara kalika bara kara
Pacific Islander Alone 5 0% Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	Non-Hispanic Asian Alone	
Other Race Alone 28 0% Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	Pacific Islander Alone	
Two or More Races Alone 249 2% Population by Sex Number Percent Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	Other Race Alone	•
Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	Two or More Races Alone	能够可能的 医克克氏病 化克克特 医克克特氏 化二氯甲基酚 医克克特氏 医克克特氏 医克克特氏 医克克特氏 医克克特氏 医克克特氏 医克克特氏病 医克克特氏病 医克格特氏病 医克格特氏病
Male 5,097 46% Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	Position and Co.	
Female 5,975 54% Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%		Number Percent
Population by Age Number Percent Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	New As Net Williams and the sign of the property of a sign of the section was a sign of the sign of th	5,097 46%
Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	Female	5,975 54%
Age 0-4 343 3% Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	Population by Age	Number Percent
Age 0-17 1,079 10% Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%		
Age 18+ 9,993 90% Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%	and a management of the contract of the contra	and the state of the second of
Age 65+ 1,089 10% Households by Tenure Number Percent Total 3,485 Owner Occupied 1,434 41%		
Households by Tenure Percent Total 3,485 Owner Occupied 1,434 41%	A SECTION OF A SECTION AND A SECTION ASSESSMENT ASSESSM	бура жана кариба 400 жылын барамын барамын байын жананын жанын түрдөгүн бүсө көрүнүн карынын жана карын жана б
Total 3,485 Owner Occupied 1,434 41%		
Owner Occupied 1,434 41%	Households by Tenure	Number Percent
	Total	3,485
Renter Occupied 2,051 59%	Owner Occupied	1,434 41%
	Renter Occupied	2,051 59%

Data Note: Detail may not sum to totals dues to rounding. Hispanic population can be of any race. Source: U.S. Census Bureau, Census 2010 Summary File 1.

Scoping Summary Appendix F Transcript

In The Matter Of:

Public Scoping Meeting
2015-2025 Facilities Master Plan EIS

Edward R. Roybal Campus January 17, 2013

American Court Reporting Company, Inc.
52 Executive Park South
Suite 5201
Atlanta, Georgia 30329-2217
(404) 892-1331 - (800) 445-2842

Original File 66242.TXT

Min-U-Script® with Word Index

2015-2025 Facilities Master Plan EIS		January 17, 2013
Page 0		Page 3
PUBLIC SCOPING MEETING	1	PUBLIC SCOPING MEETING
	2	MR. CHANDLER: Thanks for coming out.
2015-2025 FACILITIES MASTER PLAN EIS	3	We'll actually get started with the formal part
FOR THE CENTERS FOR DISEASE CONTROL	4	of tonight's meeting in about five minutes or so,
FOR THE CENTERS FOR DISEASE CONTROL	5	so we're almost there. Thank you.
AND PREVENTION'S (CDC)	6	(Brief pause.)
	7	MR. CHANDLER: Good evening, and
EDWARD R. ROYBAL CAMPUS	8	welcome to the Edward R. Roybal Campus, global
	9	headquarters of the Centers for Disease Control
	10	and Prevention, an Operating Division of the
	11	Department of Health and Human Services.
	12	I appreciate you all taking time from
	13	your busy schedules tonight to join us at the
Commencing at 7:30 p.m.	14 15	Public Scoping Meeting for the new 2015-2025 Roybal Campus Master Plan Environmental Impact
	16	Statement, or EIS for short.
January 17, 2013	17	My name is George Chandler, and I am a
Tom Harkin Global Communications Center	18	Senior Advisor at CDC, currently responsible for
Tom Harkin Global Communications Center	19	strategic facility planning and developing the
Building 19	20	2015-2025 Roybal Plan and EIS.
	21	First, a couple housekeeping items:
1600 Clifton Road NE	22	Restrooms are located at the end of the corridor
Atlanta, Georgia	23	to my right, outside the auditorium. Because
	24	this is a secure federal campus, please stay in
	25	the vicinity of the auditorium and do not explore
Page 2		Page 4
1 SPEAKERS:	1	or leave the building except by the way you
2 George F. Chandler, CDC	2	entered, through the security checkpoint.
3 Toby Kizner, Jacobs Engineering	3	If you need to take a call or text
4 John Bugga, Mason Mill Civic Association	4	message, please step out into the lobby or
5 Bruce MacGregor, Druid Hills Civic Association	5	hallway.
6 Ntale Kajumba	6	If you wish to make comments or offer
7 Hal Foster, Victoria Estates	7	information which you believe CDC should consider
8	8	in the planning and EIS processes, you may use
9	9	the comment cards provided in the lobby, or you
10	10	may make a verbal statement tonight, or you may
11	11	submit electronic or mail-in comments to the
12	12	addresses that will be shown on the final slide
13	13	of this presentation and that are also in the
14 15	14 15	brochure, or you may use any combination of these comment methods.
15 16	16	Please note that scoping comments must
17	17	be received on or before February 1st, 2013.
18	18	All comments received will become part of the
19	19	public record for the EIS.
20	20	The formal portion of the Scoping
21	21	Meeting tonight will be noted and transcribed by
22	22	a court reporter and will be available as part of
23	23	_
0.4	23	the Draft EIS.
24	24	I hope that you found the poster
24 25		

Page 7

Page 8

Page 5

general information provided at the informal portion of tonight's meeting helpful.

In this portion of the Scoping Meeting, we will go over the planning and EIS processes in a bit more detail and follow up with an opportunity for anyone in attendance tonight to make a verbal statement for the record. If you wish to make a verbal statement and have not already signed up, please hold up your hand, and a CDC staff member will assist you with registration.

Commenters will be identified through the registration sheets in no particular order. Please stand when your name is called, and a CDC representative will bring a microphone to you. When you receive the microphone, please clearly state your name and the organization you represent or if you're speaking as a private citizen for the reporter.

In order to give everyone a chance to speak -- that might not be too much of a problem tonight -- I ask that you please limit your comments to no more than three minutes and that your comments pertain to the issue at hand, the Roybal Campus 2015-2025 Master Plan, the EIS, or

needed to guide future development of the Campus. The objectives of the 2009 plan were

The objectives of the 2009 plan were substantially different from those of the new

2025 plan in that the previous plan sought to
address outdated, antiquated, and overcrowded
facilities, particularly biological labs, that

were not suitable for long-term use, and the CDCwas growing at that time.

The 2009 plan addressed these long-term facility needs through the provision of safe, modern, flexible lab, lab support and office buildings, upgraded and expanded utility systems, and greatly improved physical security at the Campus.

In contrast, the 2015-2025 Plan does not envision the wholesale replacement of facilities due to age or obsolescence. The new plan will examine the need to add space based on new or changing mission requirements, potential agency growth, and in response to increased federal cost and occupancy efficiency requirements for owned and leased space.

Through the EIS process, potential future expansion needs will take into account impacts to the natural and built environments

Page 6

an area of potential impact that we should consider. If you are approaching the three-minute mark, I or another CDC staff member will verbally alert you.

So why did CDC ask you here tonight? Under an EIS, scoping is an early, open process for determining the scope or range of issues to be addressed in the EIS and for identifying the significant issues that might result from implementing one of several potential future Roybal Campus Master Plan alternatives. It is an opportunity to actively engage in early public involvement in the planning process as we develop a range of alternatives and potentially significant impact areas. It is also an opportunity to get information directly from CDC as the process unfolds and how we are taking your comments and concerns into account when we select a preferred alternative.

CDC is preparing a new Master Plan for the Roybal Campus in large part because the previous 2000-2009 Master Plan has been implemented at Roybal through the replacement and expansion of the 1950s and 1960s buildings originally on site. A new long-range plan is through the development of various Campus alternatives that will be shared with the public and with local, state, and other federal agencies and stakeholders for review and comment prior to

CDC selecting a development alternative for the 2015-2025 Plan.

At this point in the process, scoping, CDC does not have a preferred alternative and we do not have detailed information on the number of employees, sizes of buildings, and potential impacts of the various alternatives. This information will be made available for public review and comment during the second phase of the EIS and a planning process, the Draft Environmental Impact Statement, or DEIS, which will be discussed later in this presentation.

CDC does have a range of conceptual alternatives and broad areas of potential environmental concerns to present to you this evening as we move into detailed planning and impact analysis. In no particular order, the six conceptual alternatives at the outset of the scoping process are:

No action, or status quo, with no new construction of labs, office buildings, or

2

3 4

5

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Page 11

Page 9

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

parking decks at Roybal over the 2015-2025 planning period.

Increase existing space efficiency, where CDC could increase the number of personnel at the Campus by laying out space differently and by increasing -- by increasing office sharing and other modern workplace practices for office-type space. No new office buildings and labs would be constructed under this alternative, but it is possible that efficiency-driven growth could result in the construction of an additional parking deck.

A laboratory/office mix, where CDC could construct some combination of laboratories, office space, and a parking deck, depending on future growth trends, similar to the mix of lab and office uses currently at the Campus.

The office program focus, where CDC could construct only office-type space and a parking deck to consolidate leases to Roybal and to accommodate future growth.

Laboratory program focus, where CDC could construct only lab, lab support, and a parking deck at Roybal, depending on future laboratory-based mission growth.

in evaluating these conceptual alternatives,

2 including but not limited to traffic and transportation-related impacts; air and water 3

4 quality impacts; electricity, water, and natural 5

gas supply and distribution system impacts;

cumulative impacts in the study area resulting 6 7 from the development plans of other major Clifton corridor employers; and overall community quality 8 of life in the study area. 9

At this time, Toby Kizner from Jacobs Engineering, under contract to CDC to assist in the EIS and Master Plan, will explain the EIS processes and timeline in a bit more detail. We'll follow Toby's presentation with an opportunity for verbal public scoping comments from the audience.

MS. KIZNER: Hi. My name is Toby Kizner. I'm with Jacobs, and I am the consultant project manager for the EIS.

The EIS will be prepared pursuant to the National Environmental Policy Act of 1969, commonly referred to as NEPA, which establishes national policy for the protection of the environment. NEPA provides for consideration of environmental issues in federal agency planning

Page 10

And a relocation alternative, where CDC could relocate major portions of current office-type functions from Roybal to another CDC Campus and backfill the existing office space with potential future growth or programs that would more directly benefit from close proximity to laboratories. New labs and a parking deck could be constructed under this alternative but no new office buildings.

Please note that there could be possible sub-alternatives and combinations of these alternatives as CDC develops future requirements and based on comments received during the scoping and DEIS phases of the planning and impact review processes. I also note that eventual approval of the 2015-2025 Master Plan and EIS does not constitute actual authority or funding for CDC to construct new facilities. Major new construction at Roybal would have to be authorized and funded through the Department of Health and Human Services, Office of Management and Budget, and Congressional budget processes. CDC has identified a number of

potential impact areas that need to be considered

and decision-making, mandates public disclosure of impacts from federal activities, and actively solicits public participation throughout the process. NEPA also requires that there be an early and open process for determining the scope of the issues to be addressed in an environmental impact statement. This process is commonly known as scoping, which is the purpose of tonight's meeting.

As George already mentioned, this is the public's opportunity to identify significant issues to be considered in the EIS. Input received tonight, as well as through written comments, will be factored into the development of our EIS analyses and mitigation, if necessary.

The EIS will include assessments of the existing or current conditions; future conditions within the study area independent of the proposed project, known as the no-build condition; as well as future conditions with the proposed project in place, identified as the future build condition, for each element of the proposed project.

As George previously mentioned, key areas of analysis for the EIS will include traffic and transportation, air and water

Page 12

Page 15

Page 13

quality, utility capacity, overall community quality of life, and the cumulative impacts of future growth within the study area. Other areas that will be evaluated in the EIS include land use, public policy, community facilities, urban design and visual resources, cultural resources, noise, socioeconomic conditions, hazardous materials, natural resources and sustainability.

The NEPA process will take roughly 14 to 16 months and involves the following steps:

The NEPA process officially starts with the publication of the notice of intent to prepare an EIS, commonly referred to as the NOI. This is the first public notice regarding the EIS, and it starts the scoping process and also advertises the public Scoping Meeting. The NOI for this project was published in the Federal Register, Atlanta Journal Constitution, the Decatur Dispatch, as well as community websites starting on November 17, 2012.

Once scoping is complete, we will process the public comments and commence our preparation of the Draft EIS. In addition to looking at the Roybal Campus, CDC has determined that our study area for analysis of the EIS will

the DEIS public hearing will be scheduled for late summer or fall 2013.

After the DEIS comment period is over, CDC and the EIS team will review all comments, address substantive issues raised, and identify a preferred alternative in a revised document. This revised document will become our Final EIS. The Final, or FEIS, will also be made available for public review within a 30-day review period, currently planned for fall 2013 or winter of 2014.

At the end of our 30-day review period, CDC will issue a Record of Decision. The Record of Decision concludes the NEPA process and finalizes the federal decision in terms of the selected alternative that will be implemented and any mitigation proposed.

Thank you for attending our Scoping Meeting tonight and for your continued participation in the EIS process. Now we will move to the public comment section of tonight's meeting. If you wish to make comments or offer information you believe CDC should consider in the planning and EIS processes, you may use the comment cards provided in the lobby, or you may

Page 14

je 14 |

Page 16

cover a 1-mile radius surrounding the Campus, bounded roughly by LaVista Road to the north, Clairmont Road to the east, the DeKalb County border to the west, and the land south of Decatur Road to the south. This will enable us to consider impacts to the larger community.

The DEIS discloses to the public why the action is needed, alternatives available to address the need for action, and what the impacts will be from the action.

It is anticipated that this DEIS will be issued and available for public comment this coming summer or fall 2013. The DEIS will be available for a minimum of 45 days for public comment, and a public hearing will be held within the comment period. Public comments will be solicited in the same manner as the scoping comments.

Similar to the NOI, a notice of availability of the EIS will be published in the same newspapers and websites, which will identify where the DEIS will be made available for public review, the time frame for the public comment period, as well as advertise the DEIS public hearing date. At this point, we estimate that make a verbal statement tonight, or you may submit electronic or mail-in comments to the addresses shown on the slide, which is also in your brochure. Please note that scoping comments must be received on or before February 1st, 2013. All comments received will become part of the public record for this EIS.

The formal portion of the meeting tonight will be noted and transcribed by a court reporter and will be available as part of the Draft EIS.

If you wish to make a verbal statement and have not already signed up, please hold up your hand, and a CDC staff member will assist you with registration. Commenters will be identified from their registration sheets in no particular order. Please stand when your name is called, and a CDC representative will bring a microphone to you. When you receive the microphone, please clearly state your name and the organization you represent or if you are speaking as a private citizen to the reporter.

In order to give everyone a chance to speak -- actually, we won't limit comments tonight. We generally give comments for three

Page 19

Page 20

minutes, but -- and have your comments pertain to the issue at hand, the Roybal Campus 2015-2025 Master Plan, the EIS, or an area of potential impact that we should consider.

Now let's begin with the public comment portion.

MR. BUGGA: Thank you very much. My name is John Bugga. I am the president of the Mason Mill Civic Association, which is a neighborhood located about half a mile northeast of the CDC.

I'm very happy to be here. I'm happy to be able to participate in the process. I don't have any significant questions at the moment, although one just occurred to me: One of the slides, I believe, mentioned tree cover or trees. And I'm wondering what plans there are to maintain the existing tree cover, such as it is, and it doesn't seem to be very -- doesn't seem to be sufficient, and whether there are any -- there's any intentions to increase it. And I say that in the context of Emory University's policy, which has a policy of no loss of tree cover, which has been in force for a number of years. And that's my question.

other commenters?

MS. KAJUMBA: My name is Ntale Kajumba. I have a brief question.

You've mentioned a previous Master Plan for, I guess, the year 2000 -- that covered the year 2000 to 2009 maybe. Is there any place that we can find that? I know you talked about the differences between this Master Plan and the next. But can we find the original Master Plan as a reference?

MS. KIZNER: George?

MR. CHANDLER: We can find or make available the 1996 Environmental Impact Statement and all of the analyses that pertain to that plan. In general, the plans are not public documents. This one we're redacting to make it a public document. But we can give you access to all the documentation that supported that claim, the old Environmental Impact Statement that was prepared in '09. That had the transportation model that was in a lot of the impact statements.

MS. KAJUMBA: One additional question: Is there going to be a repository like for your presentations, et cetera, that we can go look at for background information to capture this

Page 18

Page 17

MS. KIZNER: Natural resources will be a topic of analysis in the EIS. Thank you for your comment. Do we have any other comments tonight? I'd like to thank everybody who's here tonight. Another comment. I'm sorry.

MR. MACGREGOR: Thank you. I'm also glad to be here. I'm Bruce MacGregor. I'm the president of the Druid Hills Civic Association, which surrounds this august organization.

I'd like to adjunct what Mr. Bugga said and also ask that you carefully consider the traffic and transportation ease and to work closely with Emory in terms of their carpooling and mass transit and alternative transportation issues.

This is -- the next issue is really larger than the CDC, but I'd also like for you to pursue payment in lieu of taxes to local governments. We have huge numbers of public-sector employers in central DeKalb and -- which creates infrastructure issues that don't pay taxes. I understand that in other parts of the country, there are provisions for this. Thank you.

MS. KIZNER: Thank you. Do we have any

Scoping Meeting, et cetera?

MS. KIZNER: The presentation will be made available. Will we be posting it online CDC?

MR. CHANDLER: Yes, in the portal.

MS. THOMAS: Can you go to the microphone? I'm not able to hear your comments.

MR. CHANDLER: Thank you. Sorry. Can you hear me? Yes. We will put all of the background information available online through the portal. It will also be available in the Draft Environmental Impact Statement and the Final Environmental Impact Statement.

MR. FOSTER: Yes. Thank you. My name is Hal Foster. I'm a resident of Victoria Estates, which borders on the edge right down -- right down Mason Mill.

I was under the impression from some -the grapevine in the neighborhood that there was
going to be a lot of building down the hill and
through the woods and back up, which, apparently,
everything I've seen, is not the case, at least
not with CDC. So -- but a minute ago, you did
mention a 1-mile radius of -- of interest. And
what I'd like to know is what exactly does that

```
Page 21
 1
      consist of as far as your -- your interest and
      study and whatnot, because that does include our
 2
 3
      neighborhood.
 4
             MS. KIZNER: Our 1-mile radius is a
      study area for all the topics in the analysis
 5
      conducted in the Environmental Impact Statement.
 6
 7
      That area will be covered in those analyses.
             MR. FOSTER: So this will be then to
 8
 9
      come; right?
             MS. KIZNER: Yes.
10
             MR. FOSTER: Thank you.
11
            MS. KIZNER: Thank you.
12
             MR. CHANDLER: This is George Chandler.
13
      I'd just add for clarification, CDC is not
14
15
      considering any additional property acquisition
16
      outside of the existing boundaries of Roybal
      Campus under these alternatives.
17
18
             MS. KIZNER: Do we have any other
      comments this evening? Thank you, everybody.
19
20
          (Meeting adjourned at 7:56 p.m.)
21
22
23
24
25
                                                 Page 22
 1
                     CERTIFICATE
    STATE OF GEORGIA )
 3
    COUNTY OF DEKALB )
 4
              I hereby certify that the foregoing
 5
         transcript was taken down, as stated in the
 6
         caption, and the proceedings were reduced to
 7
         typewriting under my direction and control.
 8
              I further certify that the transcript is a
 9
         true and correct record of the evidence given at
10
         the said proceedings.
11
              I further certify that I am neither a
12
         relative nor employee nor attorney nor counsel to
13
         any of the parties, nor financially or otherwise
14
         interested in this matter.
15
              This the 26th day of January 2013.
16
17
18
                        AUDREY MICHELLE LING, CCR-B-1752
19
20
21
22
23
24
25
```

Appendix B Transportation

	۶	→	•	•	←	•	4	†	<i>></i>	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f.		ሻ	f)		ሻ	1	7	7	1	7
Volume (vph)	58	190	222	201	503	68	95	667	94	28	607	16
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	11	12	12	10	12	14	12	12	10	12	10
Storage Length (ft)	150		0	200		0	200		450	125		0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (ft)	25		-	25		_	25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.919			0.982				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1636	1639	0	1770	1707	0	1851	1827	1553	1604	1810	1436
Flt Permitted	0.085		-	0.187		-	0.096			0.067		1.00
Satd. Flow (perm)	146	1639	0	348	1707	0	187	1827	1553	113	1810	1436
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		39			5				109			109
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		608			3539			1422			808	
Travel Time (s)		11.8			68.9			27.7			15.7	
Peak Hour Factor	0.89	0.89	0.89	0.95	0.95	0.95	0.89	0.89	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	3%	3%	3%	2%	2%	2%	4%	4%	4%	5%	5%	5%
Adj. Flow (vph)	65	213	249	212	529	72	107	749	101	30	653	17
Shared Lane Traffic (%)					020			7.10			000	
Lane Group Flow (vph)	65	462	0	212	601	0	107	749	101	30	653	17
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			14			14	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		. •			. •			. •				
Headway Factor	1.09	1.04	1.00	1.00	1.09	1.00	0.92	1.00	1.00	1.09	1.00	1.09
Turning Speed (mph)	15		9	15		9	15		9	15	1100	9
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel		-			- · · - / ·			- · · - / ·			- · · - · ·	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	3	8		7	4		1	6	. 3	5	2	. 31117
				•			•					

	•	-	¥ •	←	•	•	†	_	-	ţ	4
Lane Group	EBL	EBT	EBR W	BL WB1	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	8			4		6		6	2		2
Detector Phase	3	8		7	ļ.	1	6	6	5	2	2
Switch Phase											
Minimum Initial (s)	4.0	4.0	4	4.0)	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	10.0	20.0		0.0 20.0		10.0	20.0	20.0	10.0	20.0	20.0
Total Split (s)	15.0	52.0		3.0 55.0		13.0	67.0	67.0	13.0	67.0	67.0
Total Split (%)	10.0%	34.7%	12.0	9% 36.7%))	8.7%	44.7%	44.7%	8.7%	44.7%	44.7%
Maximum Green (s)	9.0	46.0		2.0 49.0		7.0	61.0	61.0	7.0	61.0	61.0
Yellow Time (s)	4.0	4.0	2	1.0 4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0 2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	3.0	(0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	9.0		6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag	Le	,		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		es Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	No		•	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	54.2	43.0		.8 52.2		70.4	66.2	66.2	67.5	61.0	61.0
Actuated g/C Ratio	0.36	0.29	0.			0.47	0.44	0.44	0.45	0.41	0.41
v/c Ratio	0.49	0.93		82 1.01		0.65	0.93	0.14	0.26	0.89	0.03
Control Delay	39.0	73.7		5.5 77.4	•	43.4	51.6	2.4	25.5	56.7	0.1
Queue Delay	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.0	73.7	55	5.5 77.4		43.4	51.6	2.4	25.5	56.7	0.1
LOS	D	Е		E E		D	D	Α	С	Е	Α
Approach Delay		69.4		71.7			45.5			54.0	
Approach LOS		Е		E			D			D	

Area Type: Other

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 85 (57%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.01 Intersection Signal Delay: 58.8 Intersection Capacity Utilization 95.7%

Intersection LOS: E ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 3: Briarcliff Rd & Lavista Rd

Synchro 8 Report AM Peak Hour Page 2

	*	→	_*	4	←	*_	\	*	4	+	*	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	ሻ	† †	7	ኻ	^	7	ሻ	↑ ↑		ሻ	† }	
Volume (vph)	124	243	233	86	731	103	86	766	203	476	1505	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		100	300		400	200		0	200		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850			0.850		0.969			0.998	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	3396	0	1787	3567	0
Flt Permitted	0.288			0.576			0.121			0.121		
Satd. Flow (perm)	536	3539	1583	1073	3539	1583	225	3396	0	228	3567	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			253			112		20			1	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1499			401			1532			2209	
Travel Time (s)		29.2			7.8			29.8			43.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.86	0.86	0.95	0.95	0.92
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	3%	3%	1%	1%	2%
Adj. Flow (vph)	135	264	253	93	795	112	93	891	236	501	1584	22
Shared Lane Traffic (%)												
Lane Group Flow (vph)	135	264	253	93	795	112	93	1127	0	501	1606	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	•		12	•		12	•		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	1	6		5	2		7	4		3	8	
Permitted Phases	6		6	2		2	4			8		
	=											

	>	→	74	~	←	*_	\	\mathbf{x}	4	*	*	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Detector Phase	1	6	6	5	2	2	7	4		3	8	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	10.0	22.0	22.0	10.0	22.0	22.0	10.0	22.0		10.0	22.0	
Total Split (s)	13.0	50.0	50.0	48.0	85.0	85.0	13.0	39.0		13.0	39.0	
Total Split (%)	8.7%	33.3%	33.3%	32.0%	56.7%	56.7%	8.7%	26.0%		8.7%	26.0%	
Maximum Green (s)	7.0	44.0	44.0	42.0	79.0	79.0	7.0	33.0		7.0	33.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls (#/hr)		0	0		0	0		0			0	
Act Effct Green (s)	84.3	77.3	77.3	87.7	79.0	79.0	40.0	33.0		40.0	33.0	
Actuated g/C Ratio	0.56	0.52	0.52	0.58	0.53	0.53	0.27	0.22		0.27	0.22	
v/c Ratio	0.38	0.14	0.27	0.14	0.43	0.13	0.70	1.48		3.77	2.05	
Control Delay	21.8	26.1	10.5	19.3	34.9	12.0	67.6	261.8		1262.6	504.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	21.8	26.1	10.5	19.3	34.9	12.0	67.6	261.8		1262.6	504.1	
LOS	С	С	В	В	С	В	Е	F		F	F	
Approach Delay		19.2			30.9			247.0			684.5	
Approach LOS		В			С			F			F	

Area Type: Other

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 95 (63%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 3.77 Intersection Signal Delay: 358.9 Intersection Capacity Utilization 101.1%

Intersection LOS: F ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 4: N Druid Hills Rd & Lavista Rd

Synchro 8 Report AM Peak Hour

6: Briarcliff Rd/Briarcliffe Rd & Shepherds Ln

	ሻ	†	↓	₩ J	•	7
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	*	†	^		W	
Volume (vph)	270	792	1193	9	15	211
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.999		0.874	
Flt Protected	0.950				0.997	
Satd. Flow (prot)	1752	1845	1825	0	1639	0
Flt Permitted	0.950				0.997	
Satd. Flow (perm)	1752	1845	1825	0	1639	0
Link Speed (mph)		35	35		30	
Link Distance (ft)		360	596		474	
Travel Time (s)		7.0	11.6		10.8	
Peak Hour Factor	0.97	0.97	0.98	0.98	0.81	0.81
Heavy Vehicles (%)	3%	3%	4%	4%	1%	1%
Adj. Flow (vph)	278	816	1217	9	19	260
Shared Lane Traffic (%)						
Lane Group Flow (vph)	278	816	1226	0	279	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		26	26		12	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15			9	15	9
Sign Control		Free	Free		Stop	

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 102.2% Analysis Period (min) 15

ICU Level of Service G

Synchro 8 Report AM Peak Hour

	ᄼ	→	•	•	←	•	4	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4			4		ሻ	∱ }		*	^	7
Volume (vph)	461	42	11	20	19	12	25	500	18	55	476	356
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		0	0		0	250		0	250		150
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			25			25		·
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	1.00
Frt	0.00	0.994	1100	1100	0.968	1.00	1100	0.995	0.00	1.00	0.00	0.850
	0.950	0.962			0.981		0.950	0.000		0.950		0.000
Satd. Flow (prot)	1681	1692	0	0	1735	0	1752	3487	0	1752	3505	1568
, ,	0.950	0.962	U	U	0.981	U	0.430	0-107	U	0.415	0000	1000
Satd. Flow (perm)	1681	1692	0	0	1735	0	793	3487	0	766	3505	1568
Right Turn on Red	1001	1002	Yes	U	1700	Yes	700	0-107	Yes	700	0000	Yes
Satd. Flow (RTOR)		1	103		9	103		3	103			405
Link Speed (mph)		35			30			35			35	400
Link Distance (ft)		1757			282			2736			824	
Travel Time (s)		34.2			6.4			53.3			16.1	
Peak Hour Factor	0.96	0.96	0.96	0.80	0.80	0.80	0.91	0.91	0.91	0.88	0.88	0.88
	2%	2%	2%	4%	4%	4%	3%	3%	3%	3%	3%	3%
Heavy Vehicles (%)			2% 11		4% 24				20			
Adj. Flow (vph)	480	44	- 11	25	24	15	27	549	20	62	541	405
Shared Lane Traffic (%)	44%	000	^	0	0.4	^	07	F00	^	00	E 44	405
Lane Group Flow (vph)	269	266	0	0	64	0	27	569	0	62 No.	541	405
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	_	9	15	_	9	15	_	9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100		20	100	20
Trailing Detector (ft)	0	0		0	0		0	0		0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	20
	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Split	NA		Split	NA		Perm	NA		Perm	NA	Perm
Protected Phases	4	4		. 8	8			2			6	
Permitted Phases							2			6		6

Synchro 8 Report Page 6 AM Peak Hour

7: Briarcliff Rd & Johnson Rd/Driveway

	۶	-	\rightarrow	•	•	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
Total Split (s)	40.0	40.0		33.0	33.0		77.0	77.0		77.0	77.0	77.0
Total Split (%)	26.7%	26.7%		22.0%	22.0%		51.3%	51.3%		51.3%	51.3%	51.3%
Maximum Green (s)	33.5	33.5		26.5	26.5		70.5	70.5		70.5	70.5	70.5
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.5	2.5		2.5	2.5		2.5	2.5		2.5	2.5	2.5
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.5	6.5			6.5		6.5	6.5		6.5	6.5	6.5
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		None	None	None
Walk Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	0
Act Effct Green (s)	28.5	28.5			10.2		94.3	94.3		94.3	94.3	94.3
Actuated g/C Ratio	0.19	0.19			0.07		0.63	0.63		0.63	0.63	0.63
v/c Ratio	0.84	0.83			0.51		0.05	0.26		0.13	0.25	0.36
Control Delay	80.9	78.6			71.1		14.0	12.6		10.4	9.2	2.3
Queue Delay	0.0	0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	80.9	78.6			71.1		14.0	12.6		10.4	9.2	2.3
LOS	F	Е			Е		В	В		В	Α	Α
Approach Delay		79.8			71.1			12.7			6.5	_
Approach LOS		Е			Е			В			Α	

Intersection Summary

Area Type: Other

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 73 (49%), Referenced to phase 2:NBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.84 Intersection Signal Delay: 27.8 Intersection Capacity Utilization 54.9%

Intersection LOS: C ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 7: Briarcliff Rd & Johnson Rd/Driveway

	ሻ	†	r*	Į,	↓	w	•	\mathbf{x}	\	€	×	•
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		414	7	*	∱ 1≽			4			ર્ન	7
Volume (vph)	0	663	358	882	643	0	13	10	5	284	0	410
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	14	11	10	12	12	12	12	12	12
Storage Length (ft)	316		0	150	• •	0	0		0	0		0
Storage Lanes	1		1	1		0	0		0	0		1
Taper Length (ft)	25		•	25		•	25		•	25		
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.00	0.00			0.00	0.00		1.00			1.00	0.97
Frt			0.850					0.977			1.00	0.850
Flt Protected			0.000	0.950				0.977			0.950	0.000
Satd. Flow (prot)	0	3421	1531	1869	3388	0	0	1773	0	0	1736	1553
Flt Permitted		0.2.		0.161			•	0.602			0.738	
Satd. Flow (perm)	0	3421	1531	317	3388	0	0	1093	0	0	1343	1505
Right Turn on Red	J	0.12.1	Yes	017	0000	Yes	J	1000	Yes		1010	Yes
Satd. Flow (RTOR)			366					5				456
Link Speed (mph)		35	000		35			35			35	100
Link Distance (ft)		824			360			355			1189	
Travel Time (s)		16.1			7.0			6.9			23.2	
Confl. Peds. (#/hr)								0.0	3	3		13
Peak Hour Factor	0.97	0.97	0.97	0.94	0.94	0.94	0.92	0.92	0.92	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	3%	3%	3%	2%	2%	2%	4%	4%	4%
Parking (#/hr)	_,,	_,,	_,,	• • • • • • • • • • • • • • • • • • • •	• 70	• • • • • • • • • • • • • • • • • • • •	_,,	_,,	0	.,,	.,,	.,,
Adj. Flow (vph)	0	684	369	938	684	0	14	11	5	316	0	456
Shared Lane Traffic (%)							• •					.00
Lane Group Flow (vph)	0	684	369	938	684	0	0	30	0	0	316	456
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		14	<u> </u>		14	J		0	<u> </u>		0	<u> </u>
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	0.92	1.04	1.09	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	20
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	0
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	0
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	20
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												

Synchro 8 Report Page 8 AM Peak Hour

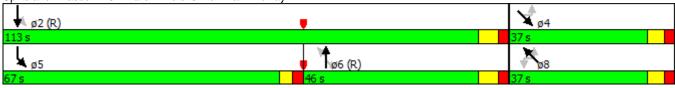
	ሻ	†	۴	Ļ	↓	W	•	\mathbf{x}	>	€	×	*
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases		6		5	2			4			8	
Permitted Phases	6	6	6	2	2		4			8		8
Detector Phase	6	6	6	5	2		4	4		8	8	8
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	4.0	10.0		7.0	7.0		7.0	7.0	7.0
Minimum Split (s)	23.0	23.0	23.0	10.0	23.0		22.3	22.3		22.3	22.3	22.3
Total Split (s)	46.0	46.0	46.0	67.0	113.0		37.0	37.0		37.0	37.0	37.0
Total Split (%)	30.7%	30.7%	30.7%	44.7%	75.3%		24.7%	24.7%		24.7%	24.7%	24.7%
Maximum Green (s)	39.0	39.0	39.0	61.5	106.0		30.7	30.7		30.7	30.7	30.7
Yellow Time (s)	4.5	4.5	4.5	3.0	4.5		3.8	3.8		3.8	3.8	3.8
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5		2.5	2.5		2.5	2.5	2.5
Lost Time Adjust (s)		0.0	0.0	0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)		7.0	7.0	5.5	7.0			6.3			6.3	6.3
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	C-Max	C-Max	C-Max	None	C-Max		None	None		None	None	None
Act Effct Green (s)		39.0	39.0	107.5	106.0			30.7			30.7	30.7
Actuated g/C Ratio		0.26	0.26	0.72	0.71			0.20			0.20	0.20
v/c Ratio		0.77	0.55	1.09	0.29			0.13			1.15	0.68
Control Delay		69.2	21.1	82.4	8.3			44.2			153.6	9.9
Queue Delay		0.0	0.0	0.0	0.0			0.0			0.0	0.0
Total Delay		69.2	21.1	82.4	8.3			44.2			153.6	9.9
LOS		Е	С	F	Α			D			F	Α
Approach Delay		52.3			51.2			44.2			68.7	
Approach LOS		D			D			D			Е	

Area Type: Other

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 120 (80%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 120


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.15 Intersection Signal Delay: 55.4 Intersection Capacity Utilization 106.5%

Intersection LOS: E ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 8: Briarcliff Rd & Clifton Rd/Driveway

Synchro 8 Report AM Peak Hour Page 9

	†	P	Į,	↓	€	*
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	∱ }			414	W	
Volume (vph)	42	8	394	657	0	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	1.00
Frt	0.976				0.865	
Flt Protected				0.982		
Satd. Flow (prot)	2865	0	0	3510	1644	0
Flt Permitted				0.982		
Satd. Flow (perm)	2865	0	0	3510	1644	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	351			484	251	
Travel Time (s)	8.0			11.0	5.7	
Peak Hour Factor	0.56	0.56	0.92	0.92	0.69	0.69
Heavy Vehicles (%)	23%	23%	1%	1%	0%	0%
Adj. Flow (vph)	75	14	428	714	0	17
Shared Lane Traffic (%)						
Lane Group Flow (vph)	89	0	0	1142	17	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	0			0	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Into						

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 42.9% Analysis Period (min) 15

ICU Level of Service A

Synchro 8 Report AM Peak Hour Page 10

Lane Configurations 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 36 173 348 Ideal Flow (vphpl) 1900	· *
Volume (vph) 118 466 350 467 679 111 23 21 36 173 348 Ideal Flow (vphpl) 1900	VT SWR
Volume (vph) 118 466 350 467 679 111 23 21 36 173 348 Ideal Flow (vphpl) 1900	<u>}</u>
Storage Length (ft) 480 0 227 52 0 0 100 Storage Lanes 1 0 1 1 1 1 1 1 Taper Length (ft) 25 25 25 25 25 25 Lane Util. Factor 1.00 0.95 0.95 1.00 0.95 0.99 0.91 0.99 0.99 Ped Bike Factor 0.99 0.98 1.00 0.95 0.99 0.91 0.99 0.99	
Storage Length (ft) 480 0 227 52 0 0 100 Storage Lanes 1 0 1 1 1 1 1 1 Taper Length (ft) 25 25 25 25 25 25 25 Lane Util. Factor 1.00 0.95 0.95 1.00	00 1900
Storage Lanes 1 0 1 1 1 1 1 1 Taper Length (ft) 25 25 25 25 25 Lane Util. Factor 1.00 0.95 0.95 1.00 0.95 1.00	0
Taper Length (ft) 25 25 25 25 Lane Util. Factor 1.00 0.95 0.95 1.00 0.95 1.00 </td <td>0</td>	0
Lane Util. Factor 1.00 0.95 0.95 1.00 0.95 1.00 1.	
	00 1.00
	99
Frt 0.936 0.850 0.850 0.952	52
Flt Protected 0.950 0.950 0.950 0.950	
Satd. Flow (prot) 1736 3195 0 1752 3505 1568 1570 1652 1404 1787 1781	81 0
Flt Permitted 0.380 0.119 0.168 0.592	
Satd. Flow (perm) 686 3195 0 219 3505 1490 276 1652 1280 1098 1781	81 0
Right Turn on Red Yes Yes Yes	Yes
Satd. Flow (RTOR) 136 176 227 19	19
Link Speed (mph) 35 35 30 30	30
Link Distance (ft) 625 693 484 1787	87
Travel Time (s) 12.2 13.5 11.0 40.6	0.6
Confl. Peds. (#/hr) 22 21 21 22 5 20 20	5
Peak Hour Factor 0.85 0.85 0.85 0.95 0.95 0.86 0.86 0.86 0.94 0.94 0.94	94 0.94
Heavy Vehicles (%) 4% 4% 4% 3% 3% 15% 15% 15% 1% 1%	
Adj. Flow (vph) 139 548 412 492 715 117 27 24 42 184 370	70 174
Shared Lane Traffic (%)	
Lane Group Flow (vph) 139 960 0 492 715 117 27 24 42 184 544	44 0
Enter Blocked Intersection No	No No
Lane Alignment Left Left Right Left Right Left Right Left R	eft Right
Median Width(ft) 12 12 12 12	12
Link Offset(ft) 0 0 0	0
Crosswalk Width(ft) 16 16 16 16	16
Two way Left Turn Lane	
Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	00 1.00
Turning Speed (mph) 15 9 15 9 15	9
Number of Detectors 1 2 1 1 2 1 1 2	2
Detector Template Left Thru Left Thru Right Left Thru Right Left Thru	ıru
Leading Detector (ft) 20 100 20 100 20 100 20 100	00
Trailing Detector (ft) 0 0 0 0 0 0 0 0	0
Detector 1 Position(ft) 0 0 0 0 0 0 0 0	0
Detector 1 Size(ft) 20 6 20 6 20 20 6	6
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex	Ex
Detector 1 Channel	
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0).0
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0).0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
Detector 2 Position(ft) 94 94 94	94
Detector 2 Size(ft) 6 6 6	6
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex	Ex
Detector 2 Channel	
Detector 2 Extend (s) 0.0 0.0 0.0 0.0	0.0
Turn Type pm+pt NA pm+pt NA Perm pm+pt NA Perm pm+pt NA	

Synchro 8 Report Page 11 AM Peak Hour

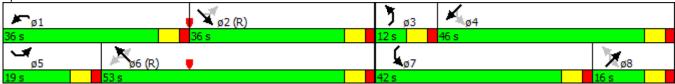
	₩.	\mathbf{x}	À	F	×	₹	7	*	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6		6	8		8	4		
Detector Phase	5	2		1	6	6	3	8	8	7	4	
Switch Phase												
Minimum Initial (s)	2.0	4.0		2.0	4.0	4.0	2.0	4.0	4.0	2.0	4.0	
Minimum Split (s)	8.0	21.0		8.0	21.0	21.0	8.0	12.0	12.0	8.0	21.5	
Total Split (s)	19.0	36.0		36.0	53.0	53.0	12.0	16.0	16.0	42.0	46.0	
Total Split (%)	14.6%	27.7%		27.7%	40.8%	40.8%	9.2%	12.3%	12.3%	32.3%	35.4%	
Maximum Green (s)	13.0	30.0		30.0	47.0	47.0	6.0	10.0	10.0	36.0	40.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None	None	None	None	
Act Effct Green (s)	40.6	30.0		70.1	53.5	53.5	28.6	23.8	23.8	47.9	40.7	
Actuated g/C Ratio	0.31	0.23		0.54	0.41	0.41	0.22	0.18	0.18	0.37	0.31	
v/c Ratio	0.46	1.14		0.95	0.50	0.16	0.23	0.08	0.10	0.36	0.95	
Control Delay	25.1	116.4		49.9	22.8	3.1	30.3	41.4	0.5	30.1	70.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	25.1	116.4		49.9	22.8	3.1	30.3	41.4	0.5	30.1	70.2	
LOS	С	F		D	С	Α	С	D	Α	С	Ε	
Approach Delay		104.9			31.1			19.7			60.1	
Approach LOS		F			С			В			Е	

Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 97 (75%), Referenced to phase 2:SETL and 6:NWTL, Start of Green

Natural Cycle: 120


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.14

Intersection Signal Delay: 62.3 Intersection LOS: E
Intersection Capacity Utilization 94.3% ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 13: Houston Mill Road/Houston Mill Rd & Clifton Rd

	-	•	•	•	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	∱ ∱			4₽	**	
Volume (vph)	964	0	0	744	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	1.00
Frt						
Flt Protected						
Satd. Flow (prot)	3471	0	0	3471	1863	0
Flt Permitted						
Satd. Flow (perm)	3471	0	0	3471	1863	0
Link Speed (mph)	35			35	30	
Link Distance (ft)	618			147	312	
Travel Time (s)	12.0			2.9	7.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	4%	4%	4%	4%	2%	2%
Adj. Flow (vph)	1048	0	0	809	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1048	0	0	809	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 30.0% Analysis Period (min) 15

ICU Level of Service A

Synchro 8 Report AM Peak Hour

	۶	→	•	•	←	•	4	†	<i>></i>	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		ř	f)		Ť	↑ ↑		ň	↑ ↑	
Volume (vph)	77	19	40	19	55	430	22	944	21	112	501	112
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	10	10	10	10	12	10	10	12	9	9	10
Storage Length (ft)	100		0	280		0	135		0	110		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	0.97		0.95	0.99		0.98	1.00		1.00	0.98	
Frt		0.899			0.867			0.997			0.973	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1465	1339	0	1652	1489	0	1604	3197	0	1533	2937	0
Flt Permitted	0.087			0.713			0.353			0.075		
Satd. Flow (perm)	134	1339	0	1183	1489	0	584	3197	0	121	2937	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		45			223			2			22	
Link Speed (mph)		30			30			35			35	
Link Distance (ft)		671			1358			1232			781	
Travel Time (s)		15.3			30.9			24.0			15.2	
Confl. Peds. (#/hr)	2		63	63		2	43		24	24		43
Peak Hour Factor	0.88	0.88	0.88	0.84	0.84	0.84	0.86	0.86	0.86	0.94	0.94	0.94
Heavy Vehicles (%)	15%	15%	15%	2%	2%	2%	5%	5%	5%	6%	6%	6%
Adj. Flow (vph)	88	22	45	23	65	512	26	1098	24	119	533	119
Shared Lane Traffic (%)												
Lane Group Flow (vph)	88	67	0	23	577	0	26	1122	0	119	652	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		10			10			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.00	1.09	1.09	1.00	1.14	1.14	1.09
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

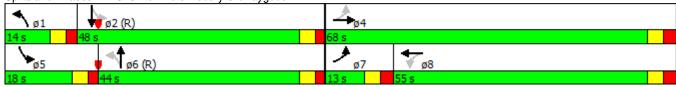
	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4			8		1	6		5	2	
Permitted Phases	4			8			6			2		
Detector Phase	7	4		8	8		1	6		5	2	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	9.5	21.8		21.8	21.8		9.2	21.1		9.0	21.1	
Total Split (s)	13.0	68.0		55.0	55.0		14.0	44.0		18.0	48.0	
Total Split (%)	10.0%	52.3%	4	2.3%	42.3%		10.8%	33.8%		13.8%	36.9%	
Maximum Green (s)	7.5	62.2		49.2	49.2		8.8	38.9		13.0	42.9	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.1		3.0	3.1	
All-Red Time (s)	2.5	2.8		2.8	2.8		2.2	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.8		5.8	5.8		5.2	5.1		5.0	5.1	
Lead/Lag	Lead			Lag	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Act Effct Green (s)	53.7	53.4		40.4	40.4		56.6	50.0		65.5	58.1	
Actuated g/C Ratio	0.41	0.41		0.31	0.31		0.44	0.38		0.50	0.45	
v/c Ratio	0.67	0.12		0.06	0.94		0.08	0.91		0.68	0.49	
Control Delay	46.9	8.6		27.8	49.2		16.7	40.1		74.1	8.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	46.9	8.6		27.8	49.2		16.7	40.1		74.1	8.6	
LOS	D	Α		С	D		В	D		Е	Α	
Approach Delay		30.4			48.4			39.6			18.7	
Approach LOS		С			D			D			В	

Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 31 (24%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94

Intersection Signal Delay: 35.0 Intersection LOS: D Intersection Capacity Utilization 84.8% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 18: Clifton Rd & Asbury Cir/Haygood Dr

Synchro 8 Report AM Peak Hour

	4	\mathbf{x}	À	_	*	₹	ን	×	~	Ĺ	K	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	∱ }		ሻ	∱ 1≽			4			4	
Volume (vph)	15	649	12	34	1245	150	3	0	19	44	2	18
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	200		0	0		0	0		0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.997			0.984			0.884			0.963	
Flt Protected	0.950			0.950				0.993			0.967	
Satd. Flow (prot)	1703	3395	0	1752	3449	0	0	1588	0	0	1685	0
Flt Permitted	0.141			0.354				0.961			0.772	
Satd. Flow (perm)	253	3395	0	653	3449	0	0	1537	0	0	1345	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			17			76			13	
Link Speed (mph)		35			35			30			30	
Link Distance (ft)		693			781			193			374	
Travel Time (s)		13.5			15.2			4.4			8.5	
Peak Hour Factor	0.92	0.92	0.92	0.93	0.93	0.93	0.63	0.63	0.63	0.68	0.68	0.68
Heavy Vehicles (%)	6%	6%	6%	3%	3%	3%	5%	5%	5%	5%	5%	5%
Adj. Flow (vph)	16	705	13	37	1339	161	5	0	30	65	3	26
Shared Lane Traffic (%)	10	700	10	01	1000	101	3	U	00	00	J	20
Lane Group Flow (vph)	16	718	0	37	1500	0	0	35	0	0	94	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	12	nigiii	Leit	12	nigiit	Leit	0	nigiit	Leit	0	nigiii
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	1	2	Э	13	2	Э	1	2	Э	1	2	Э
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
·	20	100		20	100		20	100		20	100	
Leading Detector (ft)												
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6			2			4			8		

Synchro 8 Report Page 16 AM Peak Hour

	4	\mathbf{x}	À	*	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	11.0	21.6		11.0	21.6		10.0	10.0		10.0	10.0	
Total Split (s)	16.0	82.0		16.0	82.0		32.0	32.0		32.0	32.0	
Total Split (%)	12.3%	63.1%		12.3%	63.1%		24.6%	24.6%		24.6%	24.6%	
Maximum Green (s)	10.0	76.0		10.0	76.0		26.0	26.0		26.0	26.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0			6.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	99.7	95.0		102.6	99.9			13.2			13.2	
Actuated g/C Ratio	0.77	0.73		0.79	0.77			0.10			0.10	
v/c Ratio	0.06	0.29		0.07	0.56			0.16			0.64	
Control Delay	10.0	22.4		2.6	5.1			1.5			66.2	
Queue Delay	0.0	0.0		0.0	0.4			0.0			0.0	
Total Delay	10.0	22.4		2.6	5.5			1.5			66.2	
LOS	Α	С		Α	Α			Α			Е	
Approach Delay		22.1			5.4			1.5			66.2	
Approach LOS		С			Α			Α			Е	

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 36 (28%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 55

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.64 Intersection Signal Delay: 12.9 Intersection Capacity Utilization 59.5%

Intersection LOS: B
ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 19: Driveway/Gatewood Rd & Clifton Rd

	۶	→	•	•	←	•	•	†	<i>></i>	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		€Î}		ሻ	↑ ↑		ሻ	4	7		4	
Volume (vph)	24	941	502	233	507	4	70	0	24	4	0	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	13	12	12	12	11	12	12	12	12	12
Storage Length (ft)	260		0	500		0	0		0	0		0
Storage Lanes	0		0	1		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	0.95	1.00	0.95	0.95	0.95	0.91	0.95	1.00	1.00	1.00
Ped Bike Factor		0.99					0.99	0.99			0.99	
Frt		0.949			0.999			0.989	0.850		0.915	
Flt Protected		0.999		0.950			0.950	0.956			0.982	
Satd. Flow (prot)	0	3315	0	1736	3468	0	1658	1635	1534	0	1520	0
Flt Permitted		0.937		0.092			0.745	0.728			0.881	
Satd. Flow (perm)	0	3108	0	168	3468	0	1291	1237	1534	0	1363	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		140			2			76	76		76	
Link Speed (mph)		35			35			30			30	
Link Distance (ft)		1743			618			453			209	
Travel Time (s)		34.0			12.0			10.3			4.8	
Confl. Peds. (#/hr)	20		20				2					2
Peak Hour Factor	0.92	0.92	0.92	0.93	0.93	0.93	0.90	0.90	0.90	0.56	0.56	0.56
Heavy Vehicles (%)	2%	2%	2%	4%	4%	4%	0%	0%	0%	11%	11%	11%
Adj. Flow (vph)	26	1023	546	251	545	4	78	0	27	7	0	12
Shared Lane Traffic (%)							48%		10%			
Lane Group Flow (vph)	0	1595	0	251	549	0	41	40	24	0	19	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			11			11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	0.96	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

Synchro 8 Report Page 18 AM Peak Hour

	•	-	•	•	•	*	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		2		1	6			8			3	
Permitted Phases	2			6			8		8	3		
Detector Phase	2	2		1	6		8	8	8	3	3	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	15.0	15.0		15.0	15.0		12.0	12.0	12.0	12.0	12.0	
Total Split (s)	88.0	88.0		25.0	113.0		17.0	17.0	17.0	17.0	17.0	
Total Split (%)	67.7%	67.7%		19.2%	86.9%		13.1%	13.1%	13.1%	13.1%	13.1%	
Maximum Green (s)	82.0	82.0		19.0	107.0		11.0	11.0	11.0	11.0	11.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0		0.0	0.0	0.0		0.0	
Total Lost Time (s)		6.0		6.0	6.0		6.0	6.0	6.0		6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	C-Max	C-Max		None	C-Max		None	None	None	Max	Max	
Act Effct Green (s)		86.3		107.0	107.0		11.0	11.0	11.0		11.0	
Actuated g/C Ratio		0.66		0.82	0.82		0.08	0.08	0.08		0.08	
v/c Ratio		0.76		0.80	0.19		0.38	0.23	0.12		0.10	
Control Delay		11.5		39.4	2.6		66.8	4.9	1.2		1.1	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0		0.0	
Total Delay		11.5		39.4	2.6		66.8	4.9	1.2		1.1	
LOS		В		D	Α		Е	Α	Α		Α	
Approach Delay		11.5			14.1			28.3			1.1	
Approach LOS		В			В			С			Α	

Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 35 (27%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.80

Intersection Signal Delay: 12.9 Intersection LOS: B
Intersection Capacity Utilization 77.3% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 21: CDC Entrance/Driveway & Clifton Rd

	-	\mathbf{x}	*	*	Ĺ	*
Lane Group	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	ኘ	† †	^	7	<u> </u>	7
Volume (vph)	85	873	732	132	32	11
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	11	10	8	10	1000
Storage Length (ft)	132		10	110	0	0
Storage Lanes	1			1	1	1
Taper Length (ft)	25			ı	25	ı
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Frt	1.00	0.95	0.95	0.850	1.00	0.850
Flt Protected	0.950			0.650	0.950	0.050
		3388	3271	1223	1574	1409
Satd. Flow (prot)	1636	3300	32/1	1223		1409
Flt Permitted	0.322	0000	0074	4000	0.950	4 400
Satd. Flow (perm)	554	3388	3271	1223	1574	1409
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				110		15
Link Speed (mph)		35	35		30	
Link Distance (ft)		531	625		322	
Travel Time (s)		10.3	12.2		7.3	
Peak Hour Factor	0.87	0.87	0.94	0.94	0.75	0.75
Heavy Vehicles (%)	3%	3%	3%	3%	7%	7%
Parking (#/hr)				0		
Adj. Flow (vph)	98	1003	779	140	43	15
Shared Lane Traffic (%)		,,,,,				
Lane Group Flow (vph)	98	1003	779	140	43	15
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)	Len	12	12	rugni	10	rtigrit
Link Offset(ft)		0	0		0	
			16		16	
Crosswalk Width(ft)		16	10		10	
Two way Left Turn Lane	4.00	4.04	4 00	4.07	4 00	4 00
Headway Factor	1.09	1.04	1.09	1.37	1.09	1.09
Turning Speed (mph)	15	_	_	9	15	9
Number of Detectors	1	2	2	1	1	1
Detector Template	Left	Thru	Thru	Right	Left	Right
Leading Detector (ft)	20	100	100	20	20	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	6	20	20	20
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	94	0.0	0.0	0.0
` ,		6	94			
Detector 2 Size(ft)						
Detector 2 Type		Cl+Ex	Cl+Ex			
Detector 2 Channel						
Detector 2 Extend (s)		0.0	0.0			
Turn Type	pm+pt	NA	NA	Perm	NA	Perm

Synchro 8 Report Page 20 AM Peak Hour

	4	\mathbf{x}	*	₹	Ĺ	*	
Lane Group	SEL	SET	NWT	NWR	SWL	SWR	
Protected Phases	1	6	2		8		
Permitted Phases	6			2		8	
Detector Phase	1	6	2	2	8	8	
Switch Phase							
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	9.5	21.5	21.5	21.5	12.0	12.0	
Total Split (s)	20.0	85.0	65.0	65.0	35.0	35.0	
Total Split (%)	16.7%	70.8%	54.2%	54.2%	29.2%	29.2%	
Maximum Green (s)	14.5	79.5	59.5	59.5	29.5	29.5	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag	Lead		Lag	Lag			
Lead-Lag Optimize?	Yes		Yes	Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	C-Max	C-Max	C-Max	None	None	
Act Effct Green (s)	102.5	103.6	90.2	90.2	8.7	8.7	
Actuated g/C Ratio	0.85	0.86	0.75	0.75	0.07	0.07	
v/c Ratio	0.18	0.34	0.32	0.15	0.38	0.13	
Control Delay	2.7	2.6	5.9	2.0	61.5	24.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	2.7	2.6	5.9	2.0	61.5	24.1	
LOS	Α	Α	Α	Α	Е	С	
Approach Delay		2.6	5.3		51.8		
Approach LOS		Α	Α		D		
Intersection Summary							
Area Type:	Other						
Cycle Length: 120							
Actuated Cycle Length: 120)						
Offset: 31 (26%), Reference	ed to phase	2:NWT a	and 6:SE	ΓL, Start o	of Green		
Natural Cycle: 45							
Control Type: Actuated-Coo	ordinated						
Maximum v/c Ratio: 0.38							
Intersection Signal Delay: 5	.2			Ir	ntersectio	n LOS: A	
Intersection Capacity Utiliza	ation 42.0%)		10	CU Level	of Service	e A
Analysis Period (min) 15							
Splits and Phases: 24: C	lifton Rd &	Emory Co	onf Cntr				
'	b/	, ,	-				
Ø1 65 s	ø2 (R)						
¥ ø6 (R) .							™ (ø8

Synchro 8 Report Page 21 AM Peak Hour

	ၨ	→	•	•	←	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱			4	7		414		ሻሻ	£	
Volume (vph)	390	318	6	0	463	350	12	594	49	120	76	153
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	8	12	12	12	11	11	10	10	10	10
Storage Length (ft)	150		0	0		0	0		0	200		0
Storage Lanes	1		0	0		1	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	0.95	0.97	1.00	1.00
Frt		0.997				0.850		0.989			0.900	
Flt Protected	0.950							0.999		0.950		
Satd. Flow (prot)	1752	3494	0	0	1845	1568	0	3414	0	2998	1464	0
Flt Permitted	0.156							0.945		0.950		
Satd. Flow (perm)	288	3494	0	0	1845	1568	0	3229	0	2998	1464	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3				164		6			82	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1446			1181			498			1113	
Travel Time (s)		28.2			23.0			9.7			21.7	
Peak Hour Factor	0.88	0.88	0.88	0.86	0.86	0.86	0.90	0.90	0.90	0.83	0.83	0.83
Heavy Vehicles (%)	3%	3%	3%	3%	3%	3%	1%	1%	1%	9%	9%	9%
Adj. Flow (vph)	443	361	7	0	538	407	13	660	54	145	92	184
Shared Lane Traffic (%)			•						<u> </u>			
Lane Group Flow (vph)	443	368	0	0	538	407	0	727	0	145	276	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			20			20	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					. •			. •			. •	
Headway Factor	1.00	1.00	1.20	1.00	1.00	1.00	1.04	1.04	1.09	1.09	1.09	1.09
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2	1	1	2		1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6		20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel	• · · · · · ·	• · · · <u>-</u> · ·		· · · · · ·	• · · · <u>-</u> /	• · · · · · ·	· · · · · ·	• · · · · · ·		011.2/	• · · · · · ·	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	94		0.0	94	0.0	0.0	94		0.0	94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		OITLA			OITLA			OITLA			OITLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	nmınt	NA		Perm	NA	Perm	Perm	NA		Prot	NA	
Protected Phases	pm+pt			Fellii	2	Fellil	Fellil	NA 8		7	NA 4	
1 TUIEUIEU FIIdSES	1	6			۷			ō		1	4	

	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	6			2		2	8					
Detector Phase	1	6		2	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		2.5	4.0	
Minimum Split (s)	9.1	20.0		20.0	20.0	20.0	22.5	22.5		9.0	20.0	
Total Split (s)	32.0	84.0		52.0	52.0	52.0	34.0	34.0		12.0	46.0	
Total Split (%)	24.6%	64.6%		40.0%	40.0%	40.0%	26.2%	26.2%		9.2%	35.4%	
Maximum Green (s)	26.9	78.5		46.5	46.5	46.5	27.5	27.5		5.5	42.5	
Yellow Time (s)	3.0	3.5		3.5	3.5	3.5	3.0	3.0		3.0	3.0	
All-Red Time (s)	2.1	2.0		2.0	2.0	2.0	3.5	3.5		3.5	0.5	
Lost Time Adjust (s)	0.0	0.0			0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.5			5.5	5.5		6.5		6.5	3.5	
Lead/Lag	Lead			Lag	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes			Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	78.9	78.5			47.4	47.4		27.5		5.5	42.5	
Actuated g/C Ratio	0.61	0.60			0.36	0.36		0.21		0.04	0.33	
v/c Ratio	0.95	0.17			0.80	0.60		1.06		1.15	0.52	
Control Delay	58.0	11.6			47.9	23.9		99.1		186.4	6.2	
Queue Delay	0.0	0.0			0.0	0.0		0.0		0.0	0.0	
Total Delay	58.0	11.6			47.9	23.9		99.1		186.4	6.2	
LOS	Е	В			D	С		F		F	Α	
Approach Delay		36.9			37.6			99.1			68.3	
Approach LOS		D			D			F			Е	

Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 24 (18%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.15 Intersection Signal Delay: 57.2 Intersection Capacity Utilization 95.6%

Intersection LOS: E
ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 28: Clifton Road/Clifton Rd & N Decatur Rd

	۶	→	•	•	←	•	4	†	<i>></i>	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4	7	ሻ	1	7	ሻ		7
Volume (vph)	3	0	4	28	3	7	38	703	6	6	979	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	175		175	150		150
Storage Lanes	0		1	0		1	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.950			0.957		0.950			0.950		
Satd. Flow (prot)	0	1583	1417	0	1818	1615	1752	1845	1568	1770	1863	1583
Flt Permitted	•	0.725		•	0.744		0.171		,,,,,	0.333	,,,,,	
Satd. Flow (perm)	0	1208	1417	0	1414	1615	315	1845	1568	620	1863	1583
Right Turn on Red	-		Yes	-		Yes			Yes		, , , ,	Yes
Satd. Flow (RTOR)			51			51			51			51
Link Speed (mph)		30	•		30	•		35	•		35	•
Link Distance (ft)		170			140			596			1342	
Travel Time (s)		3.9			3.2			11.6			26.1	
Peak Hour Factor	0.58	0.58	0.58	0.63	0.63	0.63	0.89	0.89	0.89	0.88	0.88	0.88
Heavy Vehicles (%)	14%	14%	14%	0%	0%	0%	3%	3%	3%	2%	2%	2%
Adj. Flow (vph)	5	0	7	44	5	11	43	790	7	7	1112	33
Shared Lane Traffic (%)		•	•	• • •	U		10	700	•	•		00
Lane Group Flow (vph)	0	5	7	0	49	11	43	790	7	7	1112	33
Enter Blocked Intersection	No	No	, No	No	No	No	No	No	No	No.	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	0	riigiit	Lon	0	riigiit	Loit	12	riigiit	Lon	12	riigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel	OITEX	OITEX	OITEX	OITEX	OITEX	OITEX	OITEX	OITEX	OITEX	OITLX	OITLX	OITLX
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94	0.0	0.0	94	0.0	0.0	94	0.0	0.0	94	0.0
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel		CITEX			CITEX			CI+EX			CITEX	
		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Dorm	NA	Perm	Perm	NA	Dorm	nmint		Perm	nmınt		Dorm
Turn Type	Perm		rem	rem		Perm	pm+pt	NA	rem	pm+pt	NA	Perm
Protected Phases	4	4	4	0	8	0	5	2	0	1	6	^
Permitted Phases	4		4	8		8	2		2	6		6

	•	-	•	•	←	•	•	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	21.0	21.0	21.0	21.0	21.0	21.0	9.0	21.0	21.0	9.0	21.0	21.0
Total Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	15.0	95.0	95.0	15.0	95.0	95.0
Total Split (%)	26.7%	26.7%	26.7%	26.7%	26.7%	26.7%	10.0%	63.3%	63.3%	10.0%	63.3%	63.3%
Maximum Green (s)	35.0	35.0	35.0	35.0	35.0	35.0	10.0	90.0	90.0	10.0	90.0	90.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0		11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0		0	0		0	0
Act Effct Green (s)		10.3	10.3		10.3	10.3	131.1	130.7	130.7	127.3	123.8	123.8
Actuated g/C Ratio		0.07	0.07		0.07	0.07	0.87	0.87	0.87	0.85	0.83	0.83
v/c Ratio		0.06	0.05		0.51	0.07	0.13	0.49	0.01	0.01	0.72	0.03
Control Delay		64.3	0.8		83.9	0.9	5.6	17.1	0.7	3.0	17.4	1.9
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.6	0.0	0.0	0.2	0.0
Total Delay		64.3	8.0		83.9	0.9	5.6	17.6	0.7	3.0	17.5	1.9
LOS		Е	Α		F	Α	Α	В	Α	Α	В	Α
Approach Delay		27.2			68.7			16.9			17.0	_
Approach LOS		С			Е			В			В	

Area Type: Other

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 64 (43%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.72

Intersection Signal Delay: 18.5 Intersection LOS: B Intersection Capacity Utilization 70.7% ICU Level of Service C

Analysis Period (min) 15

29: Briarcliffe Rd & Summit Pointe Way Splits and Phases:

Synchro 8 Report AM Peak Hour

	>	→	←	*_	\	4	
Lane Group	EBL	EBT	WBT	WBR	SEL	SER	ø4
Lane Configurations		414	† 1>		ሻሻ		
Volume (vph)	16	352	1047	662	146	20	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	11	11	11	10	10	10	
Lane Util. Factor	0.95	0.95	0.95	0.95	0.97	0.95	
Ped Bike Factor		1.00	0.99	0.00	1.00	0.100	
Frt			0.942		0.982		
Flt Protected		0.998			0.958		
Satd. Flow (prot)	0	3286	3163	0	3173	0	
Flt Permitted		0.795			0.958		
Satd. Flow (perm)	0	2617	3163	0	3162	0	
Right Turn on Red				Yes		Yes	
Satd. Flow (RTOR)			121		10		
Link Speed (mph)		35	35		30		
Link Distance (ft)		1040	506		1014		
Travel Time (s)		20.3	9.9		23.0		
Confl. Peds. (#/hr)	3	_0.0	0.10	3	2		
Peak Hour Factor	0.95	0.95	0.92	0.92	0.92	0.92	
Heavy Vehicles (%)	6%	6%	3%	3%	2%	2%	
Adj. Flow (vph)	17	371	1138	720	159	22	
Shared Lane Traffic (%)	• •	.		0			
Lane Group Flow (vph)	0	388	1858	0	181	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Left	Left	Right	Left	Right	
Median Width(ft)	2010	0	0	ı uğını	20	ı uğını	
Link Offset(ft)		0	0		0		
Crosswalk Width(ft)		16	16		16		
Two way Left Turn Lane		. •	.,				
Headway Factor	1.04	1.04	1.04	1.09	1.09	1.09	
Turning Speed (mph)	15			9	15	9	
Number of Detectors	1	2	2		1		
Detector Template	Left	Thru	Thru		Left		
Leading Detector (ft)	20	100	100		20		
Trailing Detector (ft)	0	0	0		0		
Detector 1 Position(ft)	0	0	0		0		
Detector 1 Size(ft)	20	6	6		20		
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex		CI+Ex		
Detector 1 Channel	OTT EX	OII LA	OII EX		OTTEX		
Detector 1 Extend (s)	0.0	0.0	0.0		0.0		
Detector 1 Queue (s)	0.0	0.0	0.0		0.0		
Detector 1 Delay (s)	0.0	0.0	0.0		0.0		
Detector 2 Position(ft)	0.0	94	94		0.0		
Detector 2 Size(ft)		6	6				
Detector 2 Type		Cl+Ex	Cl+Ex				
Detector 2 Channel		OI LA	OI LX				
Detector 2 Extend (s)		0.0	0.0				
Turn Type	pm+pt	NA	NA		NA		
Protected Phases	5	2	6		3		4
Permitted Phases	2		0		U		
	_						

Synchro 8 Report Page 26 AM Peak Hour

	>	→	←	*_	\	4		
Lane Group	EBL	EBT	WBT	WBR	SEL	SER	ø4	
Detector Phase	5	2	6		3			
Switch Phase								
Minimum Initial (s)	4.0	4.0	4.0		4.0		4.0	
Minimum Split (s)	10.0	20.0	20.0		20.0		22.0	
Total Split (s)	12.0	85.0	73.0		43.0		22.0	
Total Split (%)	8.0%	56.7%	48.7%		28.7%		15%	
Maximum Green (s)	6.0	79.0	67.0		37.0		16.0	
Yellow Time (s)	4.0	4.0	4.0		4.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0		2.0	
Lost Time Adjust (s)		0.0	0.0		0.0			
Total Lost Time (s)		6.0	6.0		6.0			
Lead/Lag	Lead		Lag		Lead		Lag	
Lead-Lag Optimize?	Yes		Yes		Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0		3.0		3.0	
Recall Mode	None	C-Max	C-Max		Max		None	
Walk Time (s)							5.0	
Flash Dont Walk (s)							11.0	
Pedestrian Calls (#/hr)							0	
Act Effct Green (s)		101.0	101.0		37.0			
Actuated g/C Ratio		0.67	0.67		0.25			
v/c Ratio		0.22	0.86		0.23			
Control Delay		9.8	34.5		43.5			
Queue Delay		0.0	0.0		0.0			
Total Delay		9.8	34.5		43.5			
LOS		Α	С		D			
Approach Delay		9.8	34.5		43.5			
Approach LOS		Α	С		D			
Intersection Summary								
	Other							
Cycle Length: 150								
Actuated Cycle Length: 150								
Offset: 6 (4%), Referenced t	to phase 2	:EBTL an	d 6:WBT,	Start of G	ireen			
Natural Cycle: 130								
Control Type: Actuated-Coo	rdinated							
Maximum v/c Ratio: 0.86								
Intersection Signal Delay: 3					tersection			
Intersection Capacity Utiliza	tion 65.1%)		IC	CU Level o	f Service	С	
Analysis Period (min) 15								
Splits and Phases: 33: N	Decatur R	d & Hayg	ood Dr					
→ ø2 (R)						\ > }	13	ÅÅ ø4
85 s						43 s		22 s
→ ø _{6 (R)}								

	۶	-	•	•	—	•	•	†	/	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	22	16	14	337	6	72	3	145	80	22	430	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	15	12	12	12	12	12	11	12	12	11	12
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			0.99			1.00				
Frt		0.964			0.977			0.953				
Flt Protected		0.979			0.961			0.999			0.998	
Satd. Flow (prot)	0	1972	0	0	1756	0	0	1731	0	0	1833	0
Flt Permitted		0.801			0.723			0.994			0.976	
Satd. Flow (perm)	0	1611	0	0	1321	0	0	1723	0	0	1793	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		17			11			35				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		487			1317			1728			1541	
Travel Time (s)		11.1			29.9			39.3			35.0	
Confl. Peds. (#/hr)	4				_0.0	4	1	00.0			00.0	1
Peak Hour Factor	0.82	0.82	0.82	0.92	0.92	0.92	0.82	0.82	0.82	0.86	0.86	0.86
Heavy Vehicles (%)	0%	0%	0%	1%	1%	1%	1%	1%	1%	0%	0%	0%
Adj. Flow (vph)	27	20	17	366	7	78	4	177	98	26	500	0
Shared Lane Traffic (%)	_,		• • •	000	•	70	•		00	20	000	J
Lane Group Flow (vph)	0	64	0	0	451	0	0	279	0	0	526	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	0	riigiit	Lon	0	rugiii	Loit	0	rugin	Loit	0	rugiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	0.88	1.00	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.04	1.00
Turning Speed (mph)	15	0.00	9	15	1.00	9	15	1.01	9	15		9
Number of Detectors	1	2	0	1	2	J	1	2	0	1	2	J
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel	OITEX	OITEX		OTTEX	OTTEX		OTTEX	OHEX		OTTEX	OITEX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	94		0.0	94		0.0	94		0.0	94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		OITLX			OITLX			OITLX			OITLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	i eiiii	4		i eiiii	NA 8		ı elili	2		i eiiii	6	
Permitted Phases	4	4		8	0		2			6	O	
- EIIIIIIGU FIIASES	4			0			۷			Ū		

Synchro 8 Report Page 28 AM Peak Hour

	•	-	\rightarrow	•	←	•	1	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	21.5	21.5		21.5	21.5		21.5	21.5		21.5	21.5	
Total Split (s)	50.0	50.0		50.0	50.0		60.0	60.0		60.0	60.0	
Total Split (%)	45.5%	45.5%		45.5%	45.5%		54.5%	54.5%		54.5%	54.5%	
Maximum Green (s)	44.5	44.5		44.5	44.5		54.5	54.5		54.5	54.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.5			5.5			5.5			5.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		38.1			38.1			54.8			54.8	
Actuated g/C Ratio		0.37			0.37			0.53			0.53	
v/c Ratio		0.11			0.92			0.30			0.56	
Control Delay		16.6			56.0			14.2			20.6	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		16.6			56.0			14.2			20.6	
LOS		В			Е			В			С	
Approach Delay		16.6			56.0			14.2			20.6	_
Approach LOS		В			Е			В			С	
Intersection Summary												

Other Area Type:

Cycle Length: 110

Actuated Cycle Length: 103.9

Natural Cycle: 55

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.92 Intersection Signal Delay: 31.1 Intersection Capacity Utilization 75.0%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 37: Houston Mill Rd & Mason Mill Rd

Synchro 8 Report AM Peak Hour

	۶	→	•	•	+	•	•	†	~	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	f.		ř	ĥ		, j	∱ }		ň	∱ }	
Volume (vph)	121	185	12	243	594	80	44	1183	6	97	815	290
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	150		0	150		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.991			0.981			0.999	0.00		0.960	0.00
Flt Protected	0.950	0.00		0.950	0.00		0.950	0.000		0.950	0.000	
Satd. Flow (prot)	1770	1846	0	1770	1827	0	1770	3571	0	1770	3398	0
Flt Permitted	0.066	1010	•	0.614	1027	J	0.085	0071	•	0.081	0000	·
Satd. Flow (perm)	123	1846	0	1144	1827	0	158	3571	0	151	3398	0
Right Turn on Red	120	1040	Yes	דדוו	1021	Yes	130	0071	Yes	101	0000	Yes
Satd. Flow (RTOR)		3	103		5	103			103		36	103
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		2430			1191			2954			960	
Travel Time (s)		47.3			23.2			57.5			18.7	
Peak Hour Factor	0.00		0.00	0.00		0.00	0.00		0.01	0.04		0.00
	0.92	0.92	0.92	0.88	0.92	0.88	0.92	0.91	0.91	0.94	0.94	0.92
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	1%	1%	2%	2%	2%
Adj. Flow (vph)	132	201	13	276	646	91	48	1300	7	103	867	315
Shared Lane Traffic (%)	100	211					10			400	4400	
Lane Group Flow (vph)	132	214	0	276	737	0	48	1307	0	103	1182	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel		J., L A			J L A			J L A			J., L ,	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		1	6		5	2	
Permitted Phases	4	7		8	U		6	U		2		
- OHIIIIIOO I HASES	+			U			U					

Synchro 8 Report Page 30 AM Peak Hour

	•	-	\rightarrow	•	←	*	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		3	8		1	6		5	2	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	10.0	20.0		10.0	20.0		10.0	20.0		10.0	20.0	
Total Split (s)	22.0	67.0		15.0	60.0		15.0	53.0		15.0	53.0	
Total Split (%)	14.7%	44.7%		10.0%	40.0%		10.0%	35.3%		10.0%	35.3%	
Maximum Green (s)	16.0	61.0		9.0	54.0		9.0	47.0		9.0	47.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Act Effct Green (s)	74.6	61.0		64.9	55.9		54.9	47.3		57.8	50.6	
Actuated g/C Ratio	0.50	0.41		0.43	0.37		0.37	0.32		0.39	0.34	
v/c Ratio	0.61	0.28		0.52	1.08		0.34	1.16		0.68	1.01	
Control Delay	62.6	16.0		29.9	101.1		31.3	96.7		52.3	76.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	62.6	16.0		29.9	101.1		31.3	96.7		52.3	76.0	
LOS	Е	В		С	F		С	F		D	E	
Approach Delay		33.8			81.7			94.4			74.1	
Approach LOS		С			F			F			Е	

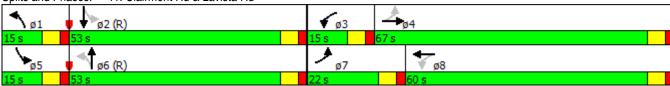
Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 14 (9%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 150


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.16 Intersection Signal Delay: 79.4 Intersection Capacity Utilization 101.1%

Intersection LOS: E ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 41: Clairmont Rd & Lavista Rd

AM Peak Hour Synchro 8 Report Page 31

	→	•	•	←	•	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>		ኘ		ሻ	7
Volume (vph)	357	65	535	897	84	167
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	1300	12	11	8
Storage Length (ft)	14	0	300	12	200	0
Storage Lanes		0	1		1	1
Taper Length (ft)		U	25		25	
Lane Util. Factor	1.00	1.00		1.00		1.00
	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		1.00		1.00	0.99
Frt	0.979		0.050		0.050	0.850
Flt Protected	400=		0.950	1001	0.950	1000
Satd. Flow (prot)	1835	0	1847	1881	1728	1386
Flt Permitted			0.423		0.950	
Satd. Flow (perm)	1835	0	821	1881	1723	1369
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	7					190
Link Speed (mph)	35			35	30	
Link Distance (ft)	1434			966	1349	
Travel Time (s)	27.9			18.8	30.7	
Confl. Peds. (#/hr)		4	4		1	1
Peak Hour Factor	0.95	0.95	0.97	0.97	0.88	0.88
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	376	68	552	925	95	190
Shared Lane Traffic (%)	0.0		002	020		100
Lane Group Flow (vph)	444	0	552	925	95	190
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
	13	nigiii	Len	13	11	nigiii
Median Width(ft)						
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	0.96	1.00	1.04	1.20
Turning Speed (mph)		9	15		15	9
Number of Detectors	2		1	2	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (ft)	100		20	100	20	20
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		20	6	20	20
Detector 1 Type	Cl+Ex		Cl+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OHEX		OHEX	OHEX	OHEX	OHEX
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
` ,						
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	Cl+Ex			Cl+Ex		
Detector 2 Channel Detector 2 Extend (s)						
	0.0			0.0		

Synchro 8 Report Page 32 AM Peak Hour

	→	•	•	•			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Turn Type	NA		pm+pt	NA	NA	Free	
Protected Phases	6		5	2	8		
Permitted Phases			2			Free	
Detector Phase	6		5	2	8		
Switch Phase							
Minimum Initial (s)	4.0		4.0	4.0	4.0		
Minimum Split (s)	20.0		10.0	20.0	20.0		
Total Split (s)	67.0		49.0	116.0	34.0		
Total Split (%)	44.7%		32.7%	77.3%	22.7%		
Maximum Green (s)	61.0		43.0	110.0	28.0		
Yellow Time (s)	4.0		4.0	4.0	4.0		
All-Red Time (s)	2.0		2.0	2.0	2.0		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.0		6.0	6.0	6.0		
Lead/Lag	Lag		Lead				
Lead-Lag Optimize?	Yes		Yes				
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Recall Mode	C-Max		None	C-Max	None		
Act Effct Green (s)	98.3		124.4	124.4	13.6	150.0	
Actuated g/C Ratio	0.66		0.83	0.83	0.09	1.00	
v/c Ratio	0.37		0.67	0.59	0.61	0.14	
Control Delay	9.2		12.9	13.1	81.4	0.2	
Queue Delay	0.0		0.0	0.0	0.0	0.0	
Total Delay	9.2		12.9	13.1	81.4	0.2	
LOS	Α		В	В	F	Α	
Approach Delay	9.2			13.1	27.3		
Approach LOS	Α			В	С		
Intersection Summary							

Other Area Type:

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 130 (87%), Referenced to phase 2:WBTL and 6:EBT, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

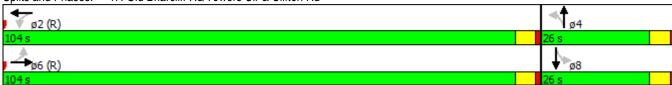
Maximum v/c Ratio: 0.67 Intersection Signal Delay: 14.1 Intersection Capacity Utilization 72.1%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 42: Houston Mill Rd & Lavista Rd

Synchro 8 Report AM Peak Hour


	۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4îb			4îb			4			4	
Volume (vph)	69	1199	15	28	445	83	12	66	264	34	13	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	13	12
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.98			1.00	
Frt		0.998			0.978			0.896			0.964	
Flt Protected		0.997			0.997			0.998			0.974	
Satd. Flow (prot)	0	3522	0	0	3339	0	0	1655	0	0	1603	0
Flt Permitted		0.865			0.820			0.988			0.238	
Satd. Flow (perm)	0	3055	0	0	2746	0	0	1638	0	0	391	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3			46			111			12	
Link Speed (mph)		35			35			30			30	
Link Distance (ft)		1189			1743			348			341	
Travel Time (s)		23.2			34.0			7.9			7.8	
Confl. Peds. (#/hr)	12					12			5	5		
Peak Hour Factor	0.94	0.94	0.94	0.93	0.93	0.93	0.79	0.79	0.79	0.68	0.68	0.68
Heavy Vehicles (%)	2%	2%	2%	5%	5%	5%	1%	1%	1%	15%	15%	15%
Adj. Flow (vph)	73	1276	16	30	478	89	15	84	334	50	19	25
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1365	0	0	597	0	0	433	0	0	94	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		6			2			4			8	
Permitted Phases	6			2			4			8		
Minimum Split (s)	22.0	22.0		22.0	22.0		20.0	20.0		20.0	20.0	
Total Split (s)	104.0	104.0		104.0	104.0		26.0	26.0		26.0	26.0	
Total Split (%)	80.0%	80.0%		80.0%	80.0%		20.0%	20.0%		20.0%	20.0%	
Maximum Green (s)	99.0	99.0		99.0	99.0		21.0	21.0		21.0	21.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Act Effct Green (s)		99.0			99.0			21.0			21.0	
Actuated g/C Ratio		0.76			0.76			0.16			0.16	
v/c Ratio		0.59			0.28			1.21			1.29	
Control Delay		7.9			3.6			153.1			238.7	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		7.9			3.6			153.1			238.7	

Synchro 8 Report Page 34 AM Peak Hour

Master Plan Project 47: Old Briarcliff Rd/Towers Cir & Clifton Rd

	۶	→	•	•	←	•	•	†	<i>></i>	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS		Α			Α			F			F	
Approach Delay		7.9			3.6			153.1			238.7	
Approach LOS		Α			Α			F			F	
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130)											
Offset: 37 (28%), Reference	ed to phase	2:WBTL	and 6:EB	TL, Start	of Green							
Natural Cycle: 60												
Control Type: Pretimed												
Maximum v/c Ratio: 1.29												
Intersection Signal Delay: 4	8.0			ln	tersection	LOS: D						
Intersection Capacity Utiliza	ation 84.8%			IC	U Level o	of Service	Е					
Analysis Period (min) 15												

Splits and Phases: 47: Old Briarcliff Rd/Towers Cir & Clifton Rd

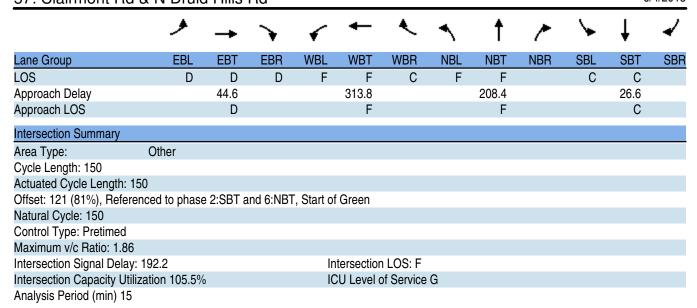
Synchro 8 Report Page 35 AM Peak Hour

	•	→	•	•	•	•	4	†	/	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*		7		4			4			ર્ન	7
Volume (vph)	14	0	0	0	0	0	16	44	6	335	18	359
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	8	12	10	12	12	12	12	16	12	12	12	11
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt								0.987				0.850
Flt Protected	0.950							0.988			0.955	
Satd. Flow (prot)	1564	0	1773	0	1900	0	0	1858	0	0	1814	1561
Flt Permitted	0.950							0.988			0.955	
Satd. Flow (perm)	1564	0	1773	0	1900	0	0	1858	0	0	1814	1561
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		289			318			193			351	
Travel Time (s)		6.6			7.2			4.4			8.0	
Peak Hour Factor	0.57	0.57	0.57	0.25	0.25	0.25	0.70	0.70	0.70	0.93	0.93	0.93
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	13%	13%	13%	0%	0%	0%
Adj. Flow (vph)	25	0	0	0	0	0	23	63	9	360	19	386
Shared Lane Traffic (%)												
Lane Group Flow (vph)	25	0	0	0	0	0	0	95	0	0	379	386
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		8			8			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.20	1.00	1.09	1.00	1.00	1.00	1.00	0.85	1.00	1.00	1.00	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
	Other											
Control Type: Unsignalized												

Control Type: Unsignalized

Intersection Capacity Utilization 36.2% ICU Level of Service A

Analysis Period (min) 15

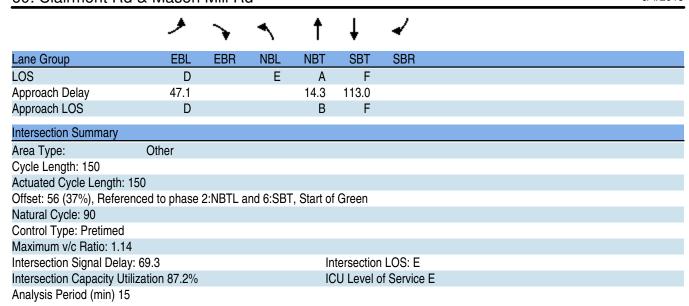

Synchro 8 Report AM Peak Hour Page 36

Lane Group EBL EBT WBT WBR SWL SWR Lane Configurations ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
Volume (vph) 25 934 736 19 7 10 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Util. Factor 0.95 0.95 0.95 0.95 1.00 1.00 Frt 0.996 0.996 0.921 0.980 0.981 0.981
Volume (vph) 25 934 736 19 7 10 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Util. Factor 0.95 0.95 0.95 0.95 1.00 1.00 Frt 0.996 0.921 0.980 0.981 0.981 0.981 0.981 0.981
Lane Util. Factor 0.95 0.95 0.95 0.95 1.00 1.00 Frt 0.996 0.991 0.980 Satd. Flow (prot) 0 3501 3457 0 1453 0 Flt Permitted 0.999 0.980 0.980 Satd. Flow (perm) 0 3501 3457 0 1453 0 Link Speed (mph) 35 35 30 1 35 35 30 1 Link Distance (ft) 147 531 214 1 214 1 1 1 214 1 1 1 214 1 1 1 2 1 1 1 2 1 1 1 1 2 1
Frt 0.996 0.921 Flt Protected 0.999 0.980 Satd. Flow (prot) 0 3501 3457 0 1453 0 Flt Permitted 0.999 0.980 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981
Fit Protected 0.999 0.980 Satd. Flow (prot) 0 3501 3457 0 1453 0 Fit Permitted 0.999 0.980 0.980 Satd. Flow (perm) 0 3501 3457 0 1453 0 Link Speed (mph) 35 35 30 1453 0 1453 0 Link Distance (ft) 147 531 214 14
Satd. Flow (prot) 0 3501 3457 0 1453 0 Flt Permitted 0.999 0.980 0.982 0.00 0.00 0.71
Fit Permitted 0.999 0.980 Satd. Flow (perm) 0 3501 3457 0 1453 0 Link Speed (mph) 35 35 30 30 1453 0 1453 0 0 1453 0
Satd. Flow (perm) 0 3501 3457 0 1453 0 Link Speed (mph) 35 35 30 30 Link Distance (ft) 147 531 214 Travel Time (s) 2.9 10.3 4.9 Peak Hour Factor 0.92 0.92 1.00 1.00 0.71 0.71 Heavy Vehicles (%) 3% 3% 4% 4% 18% 18% Adj. Flow (vph) 27 1015 736 19 10 14 Shared Lane Traffic (%) Lane Group Flow (vph) 0 1042 755 0 24 0 Enter Blocked Intersection No No No No No No No No Lane Alignment Left Left Left Right Left Right Median Width(ft) 10 10 12 12 12 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 <
Link Speed (mph) 35 35 30 Link Distance (ft) 147 531 214 Travel Time (s) 2.9 10.3 4.9 Peak Hour Factor 0.92 0.92 1.00 1.00 0.71 0.71 Heavy Vehicles (%) 3% 3% 4% 4% 18% 18% Adj. Flow (vph) 27 1015 736 19 10 14 Shared Lane Traffic (%) Lane Group Flow (vph) 0 1042 755 0 24 0 Enter Blocked Intersection No No No No No No No Lane Alignment Left Left Left Right Left Right Median Width(ft) 10 10 12 Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00
Link Distance (ft) 147 531 214 Travel Time (s) 2.9 10.3 4.9 Peak Hour Factor 0.92 0.92 1.00 1.00 0.71 0.71 Heavy Vehicles (%) 3% 3% 4% 4% 18% 18% Adj. Flow (vph) 27 1015 736 19 10 14 Shared Lane Traffic (%) Lane Group Flow (vph) 0 1042 755 0 24 0 Enter Blocked Intersection No State of the Right Eft Right <td< td=""></td<>
Travel Time (s) 2.9 10.3 4.9 Peak Hour Factor 0.92 0.92 1.00 1.00 0.71 0.71 Heavy Vehicles (%) 3% 3% 4% 4% 18% 18% Adj. Flow (vph) 27 1015 736 19 10 14 Shared Lane Traffic (%) 2 0 24 0 Lane Group Flow (vph) 0 1042 755 0 24 0 Enter Blocked Intersection No 10 No
Peak Hour Factor 0.92 0.92 1.00 1.00 0.71 0.71 Heavy Vehicles (%) 3% 3% 4% 4% 18% 18% Adj. Flow (vph) 27 1015 736 19 10 14 Shared Lane Traffic (%) Lane Group Flow (vph) 0 1042 755 0 24 0 Enter Blocked Intersection No
Heavy Vehicles (%) 3% 3% 4% 4% 18% Adj. Flow (vph) 27 1015 736 19 10 14 Shared Lane Traffic (%) Lane Group Flow (vph) 0 1042 755 0 24 0 Enter Blocked Intersection No 10 10 10 <
Adj. Flow (vph) 27 1015 736 19 10 14 Shared Lane Traffic (%) Lane Group Flow (vph) 0 1042 755 0 24 0 Enter Blocked Intersection No No No No No No No Lane Alignment Left Left Left Right Left Right Median Width(ft) 10 10 12 12 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 9
Shared Lane Traffic (%) Lane Group Flow (vph) 0 1042 755 0 24 0 Enter Blocked Intersection No
Lane Group Flow (vph) 0 1042 755 0 24 0 Enter Blocked Intersection No N
Enter Blocked Intersection No 10 10 10 <th< td=""></th<>
Lane Alignment Left Left Left Right Left Right Median Width(ft) 10 10 12 </td
Median Width(ft) 10 10 12 Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 9
Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 9
Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane 1.00 <
Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 9
Headway Factor 1.00<
Turning Speed (mph) 15 9 15 9
Sign Control Free Free Stop
Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 53.8% ICU Level of Service
Analysis Period (min) 15

Synchro 8 Report Page 37 AM Peak Hour

	ၨ	→	•	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† †	7	ሻ	^	7	44	∱ }		14.54	† }	
Volume (vph)	21	449	440	381	1617	424	413	780	70	142	906	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		300	300		400	300		0	150		0
Storage Lanes	1		1	1		1	2		0	2		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.97	0.95	0.95	0.97	0.95	0.95
Frt			0.850			0.850		0.988			0.997	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	3505	1568	1770	3539	1583	3433	3497	0	3433	3529	0
Flt Permitted	0.091			0.418			0.950			0.950		
Satd. Flow (perm)	168	3505	1568	779	3539	1583	3433	3497	0	3433	3529	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			224			272		6			2	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		2209			1641			2226			2954	
Travel Time (s)		43.0			32.0			43.4			57.5	
Peak Hour Factor	0.95	0.95	0.95	0.97	0.97	0.97	0.92	0.92	0.92	0.96	0.96	0.96
Heavy Vehicles (%)	3%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	22	473	463	393	1667	437	449	848	76	148	944	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	22	473	463	393	1667	437	449	924	0	148	964	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	3	8	_	7	4	_	1	6		5	2	
Permitted Phases	8		8	4		4						
Minimum Split (s)	10.0	20.0	20.0	10.0	20.0	20.0	10.0	20.0		10.0	20.0	
Total Split (s)	22.0	50.0	50.0	16.0	44.0	44.0	19.0	37.0		47.0	65.0	
Total Split (%)	14.7%	33.3%	33.3%	10.7%	29.3%	29.3%	12.7%	24.7%		31.3%	43.3%	
Maximum Green (s)	16.0	44.0	44.0	10.0	38.0	38.0	13.0	31.0		41.0	59.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Act Effct Green (s)	60.0	44.0	44.0	48.0	38.0	38.0	13.0	31.0		41.0	59.0	
Actuated g/C Ratio	0.40	0.29	0.29	0.32	0.25	0.25	0.09	0.21		0.27	0.39	
v/c Ratio	0.09	0.46	0.75	1.25	1.86	0.72	1.51	1.27		0.16	0.69	
Control Delay	40.6	52.3	37.0	171.8	422.6	26.3	293.4	167.1		24.8	26.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	40.6	52.3	37.0	171.8	422.6	26.3	293.4	167.1		24.8	26.9	

AM Peak Hour Synchro 8 Report Page 38


Splits and Phases: 57: Clairmont Rd & N Druid Hills Rd

AM Peak Hour Synchro 8 Report
Page 39

	۶	\rightarrow	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	^	†	
Volume (vph)	86	89	166	1237	1652	303
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	200	1000	1000	0
Storage Lanes	1	0	1			0
Taper Length (ft)	25	U	25			U
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	0.95
Frt	0.931	1.00	1.00	0.33	0.977	0.55
Flt Protected	0.931		0.950		0.311	
Satd. Flow (prot)	1709	0	1770	3539	3492	0
Flt Permitted	0.976	U	0.048	0008	J 4 32	U
	1709	0	0.048	3539	3492	0
Satd. Flow (perm)	1709		89	3339	3492	
Right Turn on Red	-00	Yes			04	Yes
Satd. Flow (RTOR)	33			25	21	
Link Speed (mph)	30			35	35	
Link Distance (ft)	2037			803	2226	
Travel Time (s)	46.3			15.6	43.4	
Peak Hour Factor	0.77	0.77	0.89	0.89	0.93	0.93
Heavy Vehicles (%)	1%	1%	2%	2%	1%	1%
Adj. Flow (vph)	112	116	187	1390	1776	326
Shared Lane Traffic (%)						
Lane Group Flow (vph)	228	0	187	1390	2102	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	<u></u>		24	24	g
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	10			10	10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9		NIA	NIA	9
Turn Type	NA		pm+pt	NA	NA	
Protected Phases	4		5	2	6	
Permitted Phases	00.0		2	00.0	20.0	
Minimum Split (s)	20.0		9.0	20.0	20.0	
Total Split (s)	41.0		25.0	109.0	84.0	
Total Split (%)	27.3%		16.7%	72.7%	56.0%	
Maximum Green (s)	36.0		20.0	104.0	79.0	
Yellow Time (s)	4.0		4.0	4.0	4.0	
All-Red Time (s)	1.0		1.0	1.0	1.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	5.0		5.0	5.0	5.0	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Act Effct Green (s)	36.0		104.0	104.0	79.0	
Actuated g/C Ratio	0.24		0.69	0.69	0.53	
v/c Ratio	0.52		0.66	0.57	1.14	
Control Delay	47.1		67.0	7.1	113.0	
Queue Delay	0.0		0.0	0.1	0.0	
•						
Total Delay	47.1		67.0	7.2	113.0	

AM Peak Hour Synchro 8 Report Page 40

Splits and Phases: 60: Clairmont Rd & Mason Mill Rd

AM Peak Hour Synchro 8 Report
Page 41

	۶	→	•	•	•	•	1	Ť	~	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ»			4		ሻ	^	7	ሻ	∱ }	
Volume (vph)	49	0	23	7	0	28	157	1193	0	Ö	1120	442
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		0	0		0	200		200	100		0
Storage Lanes	1		0	0		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.850			0.892						0.958	
Flt Protected 0	.950				0.990		0.950					
	1787	1599	0	0	1678	0	1787	3574	1881	1881	3424	0
\(\(\frac{1}{2}\)	.851				0.931		0.073					
	1601	1599	0	0	1578	0	137	3574	1881	1881	3424	0
Right Turn on Red			Yes			Yes			Yes		•	Yes
Satd. Flow (RTOR)		113			65						50	
Link Speed (mph)		30			30			35			35	
Link Distance (ft)		796			344			1229			803	
Travel Time (s)		18.1			7.8			23.9			15.6	
	0.75	0.75	0.75	0.88	0.88	0.88	0.95	0.95	0.95	0.91	0.91	0.91
Heavy Vehicles (%)	1%	1%	1%	0.00	0%	0.00	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	65	0	31	8	0	32	165	1256	0	0	1231	486
Shared Lane Traffic (%)	00	U	O I	U	U	UL	100	1230	U	U	1201	+00
Lane Group Flow (vph)	65	31	0	0	40	0	165	1256	0	0	1717	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left		Left	Left		Left	Left	
Median Width(ft)	Leit	12	nigiii	Len	12	Right	Leit	12	Right	Leit	12	Right
Link Offset(ft)		0			0			0			0	
` '		16			16						16	
Crosswalk Width(ft)		10			10			16			10	
Two way Left Turn Lane	1.00	1.00	1 00	1.00	1 00	1 00	1 00	1.00	4.00	4.00	1 00	1 00
•	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	0	9	15	_	9	15	_	9	15	^	9
Number of Detectors	1	2		1	2		1	2 Th	1 Dialet	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	
	l+Ex	Cl+Ex		Cl+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type F	Perm	NA		Perm	NA		pm+pt	NA	Perm	Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2		2	6		

AM Peak Hour Synchro 8 Report Page 42

	۶	-	•	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	6	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	22.0	22.0		22.0	22.0		10.0	22.0	22.0	22.0	22.0	
Total Split (s)	66.0	66.0		66.0	66.0		12.0	84.0	84.0	72.0	72.0	
Total Split (%)	44.0%	44.0%		44.0%	44.0%		8.0%	56.0%	56.0%	48.0%	48.0%	
Maximum Green (s)	60.0	60.0		60.0	60.0		6.0	78.0	78.0	66.0	66.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max	C-Max	C-Max	C-Max	
Walk Time (s)	5.0	5.0		5.0	5.0			5.0	5.0	5.0	5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0			0	0	0	0	
Act Effct Green (s)	12.6	12.6			12.3		128.0	129.2			101.4	
Actuated g/C Ratio	0.08	0.08			0.08		0.85	0.86			0.68	
v/c Ratio	0.49	0.13			0.21		0.48	0.41			0.74	
Control Delay	76.6	1.1			6.9		37.5	0.9			2.4	
Queue Delay	0.0	0.0			0.0		0.0	0.0			0.6	
Total Delay	76.6	1.1			6.9		37.5	0.9			3.0	
LOS	Е	Α			Α		D	Α			Α	
Approach Delay		52.2			6.9			5.1			3.0	
Approach LOS		D			Α			Α			Α	

Area Type: Other

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 88 (59%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 5.4 Intersection LOS: A Intersection Capacity Utilization 78.2% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 61: Clairmont Rd & Southern Ln/Driveway

Synchro 8 Report AM Peak Hour

Master Plan Project 62: Clairmont Rd & Veterans Affairs Med Cen/Clairmont Lk

	۶	→	•	•	←	•	4	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	f)		ሻ	∱ }		7	∱ }	
Volume (vph)	66	Ö	65	34	1	24	326	1272	12	15	968	171
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		150	100		0	250		0	250		0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850		0.855			0.999			0.977	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1719	1810	1538	1719	1547	0	1787	3571	0	1770	3458	0
Flt Permitted	0.736			0.757			0.147			0.210		
Satd. Flow (perm)	1332	1810	1538	1370	1547	0	277	3571	0	391	3458	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			280		31			1			17	
Link Speed (mph)		30			30			35			35	
Link Distance (ft)		420			540			1958			1229	
Travel Time (s)		9.5			12.3			38.1			23.9	
Peak Hour Factor	0.80	0.80	0.80	0.78	0.78	0.78	0.98	0.98	0.98	0.93	0.93	0.93
Heavy Vehicles (%)	5%	5%	5%	5%	5%	5%	1%	1%	1%	2%	2%	2%
Adj. Flow (vph)	82	0	81	44	1	31	333	1298	12	16	1041	184
Shared Lane Traffic (%)	OL.	•	O I		•	O1	000	1200		10	1011	101
Lane Group Flow (vph)	82	0	81	44	32	0	333	1310	0	16	1225	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	12	riigiit	Len	12	rugut	Leit	12	rugiit	Leit	12	rugiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	1	2	1	1	2	3	13	2	9	1	2	9
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel	CI+EX	CI+EX	CI+EX	CI+EX	CI+EX		CI+EX	CI+EX		CI+EX	CI+EX	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
` ,	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)												
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0 94		0.0	0.0 94		0.0	0.0	
Detector 2 Position(ft)		94									94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel		0.0						0.0			0.0	
Detector 2 Extend (s)	_	0.0	_	_	0.0			0.0			0.0	
Turn Type	Perm		Perm	Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		1	6		5	2	
Permitted Phases	4		4	8			6			2		

Synchro 8 Report Page 44 AM Peak Hour

	•	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	4	8	8		1	6		5	2	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0		10.0	22.0		10.0	22.0	
Total Split (s)	48.0	48.0	48.0	48.0	48.0		31.0	80.0		22.0	71.0	
Total Split (%)	32.0%	32.0%	32.0%	32.0%	32.0%		20.7%	53.3%		14.7%	47.3%	
Maximum Green (s)	42.0	42.0	42.0	42.0	42.0		25.0	74.0		16.0	65.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None		None	C-Max		None	C-Max	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0			5.0			5.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)	0	0	0	0	0			0			0	
Act Effct Green (s)	14.6		14.6	14.6	14.6		123.4	118.6		94.6	88.9	
Actuated g/C Ratio	0.10		0.10	0.10	0.10		0.82	0.79		0.63	0.59	
v/c Ratio	0.64		0.20	0.33	0.18		0.65	0.46		0.05	0.60	
Control Delay	85.4		1.1	67.9	21.2		38.0	4.1		8.5	23.8	
Queue Delay	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	85.4		1.1	67.9	21.2		38.0	4.1		8.5	23.8	
LOS	F		Α	Е	С		D	Α		Α	С	
Approach Delay					48.2			11.0			23.6	
Approach LOS					D			В			С	
Intersection Summary												

Area Type: Other

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 1 (1%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 75


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.65 Intersection Signal Delay: 18

Intersection Signal Delay: 18.6 Intersection LOS: B
Intersection Capacity Utilization 75.6% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 62: Clairmont Rd & Veterans Affairs Med Cen/Clairmont Lk

AM Peak Hour Synchro 8 Report Page 45

Lane Configurations		۶	-	•	•	←	•	4	†	<i>></i>	>	ţ	-√
Volume (vph) 207 463 138 72 966 16 269 952 28 102 533 324 Ideal Flow (vphpi) 1900 1900 1900 1900 1900 1900 1900 1900 1900 Storage Length (ft) 200 0 300 0 150 300 200 0 1900 Storage Lanes 1	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph) 207 463 138 72 966 16 269 952 28 102 533 324 Ideal Flow (vphpi) 1900 1900 1900 1900 1900 1900 1900 1900 1900 Storage Length (ft) 200 0 300 0 150 300 200 0 1900 Storage Lanes 1	Lane Configurations	ሻ	↑ 1>		ሻ	↑ 1>		ሻ	^	7	7	∱ 1≽	
Storage Length: (ft)	Volume (vph)	207		138	72		16	269		28	102		324
Storage Length: (ft)	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lanes													
Taper Length (ff)		1		0	1		0	1		1	1		0
Lane Unit Factor		25			25			25			25		
Fith		1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	0.95
Satd. Flow (prot) 1770 3419 0 1770 3532 0 1703 3406 1524 1770 3337 0			0.966			0.998				0.850		0.943	
Fit Permitted	Flt Protected	0.950			0.950			0.950			0.950		
Fit Permitted			3419	0		3532	0		3406	1524		3337	0
Satd. Flow (perm) 130 3419 0 635 3532 0 176 3406 1524 210 3337 0 768	" /												
Fight Turn on Red Yes Ye			3419	0		3532	0		3406	1524		3337	0
Satd. Flow (RTOR)	``	, , ,											
Link Speed (mph)	•		31			1						80	
Link Distance (fft)	,								35	.00			
Travel Time (s)													
Peak Hour Factor 0.92 0.92 0.92 0.88 0.88 0.88 0.84 0.84 0.84 0.98 0.	` ,												
Heavy Vehicles (%)	` '	0.92		0 92	0.88		0.88	0.84		0.84	0.08		0.98
Adj. Flow (vph) 225 503 150 82 1098 18 320 1133 33 104 544 331 Shared Lane Traffic (%) Lane Group Flow (vph) 225 653 0 82 1116 0 320 1133 33 104 875 0 Enter Blocked Intersection No													
Shared Lane Traffic (%) Lane Group Flow (yph) 225 653 0 82 1116 0 320 1133 33 104 875 0 0 Enter Blocked Intersection No No No No No No No	• • • • • • • • • • • • • • • • • • • •												
Lane Group Flow (vph) 225 653 0 82 1116 0 320 1133 33 104 875 0		223	303	130	02	1090	10	320	1100	33	104	344	331
Enter Blocked Intersection		225	652	Λ	00	1116	٥	220	1122	22	104	975	0
Left Alignment Left Left Right Left Left Right Left Right Left Right Left Right Left Right Median Width(ft) 12 12 12 12 12 12 12 1	• • • • •												
Median Width(fft) 12 16 10 10 100 100 100 100 100 100 100 100 100 100 100 <													
Link Offset(fft)	ŭ	Leit		nıgııı	Leit		nigiii	Leit		nigiii	Len		nigiii
Crosswalk Width(fft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00													
Two way Left Turn Lane	` ,												
Headway Factor 1.00	` '		10			10			10			10	
Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 2 1 1 2 Detector Template Left Thru Left Thru Left Thru Right Left Thru Leading Detector (ft) 20 100 20 100 20 100 20 20 100 Trailing Detector (ft) 0 <td></td> <td>1.00</td> <td>1.00</td> <td>4.00</td> <td>1 00</td> <td>1.00</td> <td>1.00</td> <td>4.00</td> <td>1.00</td> <td>1 00</td> <td>1.00</td> <td>1 00</td> <td>1.00</td>		1.00	1.00	4.00	1 00	1.00	1.00	4.00	1.00	1 00	1.00	1 00	1.00
Number of Detectors 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 10 0 0 0			1.00			1.00			1.00			1.00	
Detector Template			0	9		0	9		_			_	9
Leading Detector (ft) 20 100 20 100 20 20 100 Trailing Detector (ft) 0					-								
Trailing Detector (ft) 0													
Detector 1 Position(ft) 0													
Detector 1 Size(ft) 20 6 20 6 20 20 6 Detector 1 Type CI+Ex CI+													
Detector 1 Type CI+Ex	` ,									_			
Detector 1 Channel Detector 1 Extend (s) 0.0	` ,												
Detector 1 Extend (s) 0.0		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Queue (s) 0.0 Turn Type pm+pt NA pm+pt NA pm+pt NA Perm pm+pt NA													
Detector 1 Delay (s) 0.0 Turn Type pm+pt NA pm+pt NA pm+pt NA Perm pm+pt NA													
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type Cl+Ex Cl+Ex Cl+Ex Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type pm+pt NA pm+pt NA Perm pm+pt NA	` ,												
Detector 2 Size(ft) 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type pm+pt NA pm+pt NA Perm pm+pt NA		0.0			0.0			0.0		0.0	0.0		
Detector 2 Type Cl+Ex Cl+Ex Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type pm+pt NA pm+pt NA pm+pt NA Perm pm+pt NA	\ <i>\</i>		94			94			94			94	
Detector 2 Channel 0.0													
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Turn Type NA pm+pt NA pm+pt NA Perm pm+pt NA			Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Turn Type pm+pt NA pm+pt NA pm+pt NA Perm pm+pt NA	Detector 2 Channel												
Turn Type pm+pt NA pm+pt NA pm+pt NA Perm pm+pt NA	Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
	, ,	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	
	Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases 8 4 6 6 2					4			6		6			

Synchro 8 Report Page 46 AM Peak Hour

	•	-	\rightarrow	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	3	8		7	4		1	6	6	5	2	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	9.5	20.0		9.5	20.0		9.5	20.0	20.0	9.5	20.0	
Total Split (s)	22.0	66.0		15.0	59.0		28.0	54.0	54.0	15.0	41.0	
Total Split (%)	14.7%	44.0%		10.0%	39.3%		18.7%	36.0%	36.0%	10.0%	27.3%	
Maximum Green (s)	16.5	60.5		9.5	53.5		22.5	48.5	48.5	9.5	35.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5		5.5	5.5		5.5	5.5	5.5	5.5	5.5	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	
Act Effct Green (s)	73.8	59.7		60.5	51.9		65.2	50.6	50.6	44.6	35.5	
Actuated g/C Ratio	0.49	0.40		0.40	0.35		0.43	0.34	0.34	0.30	0.24	
v/c Ratio	0.93	0.47		0.26	0.91		0.99	0.99	0.05	0.67	1.03	
Control Delay	82.2	28.5		22.5	58.6		92.4	72.4	0.2	71.9	61.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	82.2	28.5		22.5	58.6		92.4	72.4	0.2	71.9	61.8	
LOS	F	С		С	Е		F	Е	Α	Ε	Ε	
Approach Delay		42.2			56.1			75.1			62.8	
Approach LOS		D			Е			E			Е	

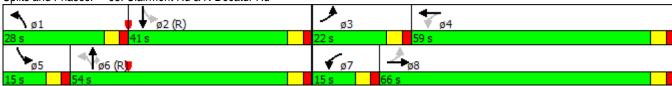
Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 90 (60%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 110


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.03 Intersection Signal Delay: 61.1 Intersection Capacity Utilization 97.0%

Intersection LOS: E ICU Level of Service F

Analysis Period (min) 15

AM Peak Hour Synchro 8 Report Page 47

Lane Configurations		۶	→	•	•	←	•	4	†	/	/	ţ	
Volume (uph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph)	Lane Configurations	ሻ	ĵ,		ሻ	ĵ.		ሻ	î,		ሻ	î,	
Ideal Flow (vphpl)	Volume (vph)	63		68	220		92	41		168	68		37
Storage Length (ft) 150	Ideal Flow (vphpl)	1900		1900	1900	1900	1900	1900	1900	1900	1900		1900
Storage Lanes	` ' ' '			0	300		0	150		0	150		0
Taper Length (ft)		1		0	1		0	1		0	1		0
Lane Util. Factor		25			25			25			25		
Fit Protected		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Satd. Flow (prot) 1770 1814 0 1752 1787 0 1703 1723 0 1787 1859	Frt		0.974			0.969			0.961			0.988	
Satd. Flow (prot) 1770 1814 0 1752 1787 0 1703 1723 0 1787 1859	Flt Protected	0.950			0.950			0.950			0.950		
Fit Permitted			1814	0		1787	0		1723	0		1859	0
Satid Flow (perm) 397 1814 0 214 1787 0 462 1723 0 119 1859 1859 1851 14 1859 1851 14 1859 1851 14 1859 1851 14 1855 1851 14 1855 185	" ,												
Right Turn on Red			1814	0		1787	0		1723	0		1859	0
Satid Flow (RTOR)	" ,												Yes
Link Speed (mph) 35 35 35 35 35 Link Distance (ft) 963 3080 1244 2528 Travel Time (s) 18.8 60.0 24.2 49.2 Peak Hour Factor 0.83 0.83 0.83 0.92 0.92 0.90 0.90 0.90 0.86			7			9			14			4	
Link Distance (ft)	,												
Travel Time (s)													
Peak Hour Factor 0.83 0.83 0.83 0.92 0.92 0.92 0.90 0.90 0.90 0.86 0.	` ,												
Heavy Vehicles (%)	` '	0.83		0 83	0.92		0.92	0.90		0 90	0.86		0.86
Adj. Flow (vph) 76 383 82 239 387 100 46 533 187 79 480 Shared Lane Traffic (%) Lane Group Flow (vph) 76 465 0 239 487 0 46 720 0 79 523 Enter Blocked Intersection No No <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1%</td></td<>													1%
Shared Lane Traffic (%) Lane Group Flow (vph) 76 465 0 239 487 0 46 720 0 79 523 Enter Blocked Intersection No No No No No No No	` ` '												43
Lane Group Flow (vph) 76 465 0 239 487 0 46 720 0 79 523		70	303	02	239	307	100	40	555	107	19	400	40
Enter Blocked Intersection		76	10E	0	000	407	^	46	700	0	70	EOO	0
Lane Alignment													0 No
Median Width(ft) 12 12 12 12 12 Link Offset(ft) 0 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00													
Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 <td>•</td> <td>Len</td> <td></td> <td>Right</td> <td>Len</td> <td></td> <td>Hight</td> <td>Lett</td> <td></td> <td>Right</td> <td>Lett</td> <td></td> <td>Right</td>	•	Len		Right	Len		Hight	Lett		Right	Lett		Right
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00													
Two way Left Turn Lane Headway Factor 1.00	` ,												
Headway Factor			16			16			16			16	
Turning Speed (mph) 15 9 15 9 15 9 15 Number of Detectors 1 2 1 2 1 2 1 2 Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (ft) 20 100 20 100 20 100 20 100 Trailing Detector (ft) 0													
Number of Detectors 1 2 1 2 1 2 1 2 Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (ft) 20 100 20 100 20 100 20 100 Trailing Detector (ft) 0	•		1.00			1.00			1.00			1.00	1.00
Detector Template Left Thru Left <td></td> <td></td> <td></td> <td>9</td> <td></td> <td></td> <td>9</td> <td></td> <td></td> <td>9</td> <td></td> <td>_</td> <td>9</td>				9			9			9		_	9
Leading Detector (ft) 20 100 20 100 20 100 20 100 Trailing Detector (ft) 0					•								
Trailing Detector (ft) 0	•												
Detector 1 Position(ft) 0													
Detector 1 Size(ft) 20 6 20 6 20 6 20 6 Detector 1 Type Cl+Ex Cl+Ex </td <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td></td>					0	0					0	0	
Detector 1 Type CI+Ex	. ,												
Detector 1 Channel Detector 1 Extend (s) 0.0	` ,												
Detector 1 Extend (s) 0.0 0.	• • • • • • • • • • • • • • • • • • • •	Cl+Ex	Cl+Ex		Cl+Ex	CI+Ex		Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex	
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Delay (s) 0.0	Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6	Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Size(ft) 6 6 6	Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
	Detector 2 Position(ft)		94			94			94			94	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex	Detector 2 Size(ft)		6			6			6			6	
			Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel													
Detector 2 Extend (s) 0.0 0.0 0.0 0.0			0.0			0.0			0.0			0.0	
Turn Type pm+pt NA pm+pt NA pm+pt NA pm+pt NA	. ,	pm+pt			pm+pt			pm+pt			pm+pt		
Protected Phases 5 2 1 6 7 4 3 8													
Permitted Phases 2 6 4 8								-	•				

Synchro 8 Report Page 48 AM Peak Hour

	•	-	•	•	←	•	1	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	5	2		1	6		7	4		3	8	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	10.0	20.0		10.0	20.0		10.0	20.0		10.0	20.0	
Total Split (s)	13.0	50.0		20.0	57.0		13.0	67.0		13.0	67.0	
Total Split (%)	8.7%	33.3%		13.3%	38.0%		8.7%	44.7%		8.7%	44.7%	
Maximum Green (s)	7.0	44.0		14.0	51.0		7.0	61.0		7.0	61.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	50.9	44.0		64.0	51.1		67.8	61.1		69.2	63.6	
Actuated g/C Ratio	0.34	0.29		0.43	0.34		0.45	0.41		0.46	0.42	
v/c Ratio	0.38	0.87		1.02	0.79		0.17	1.02		0.60	0.66	
Control Delay	32.3	66.7		98.0	54.7		21.6	80.4		67.0	24.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	32.3	66.7		98.0	54.7		21.6	80.4		67.0	24.5	
LOS	С	Е		F	D		С	F		Е	С	
Approach Delay		61.9			69.0			76.9			30.1	
Approach LOS		Е			Е			Е			С	

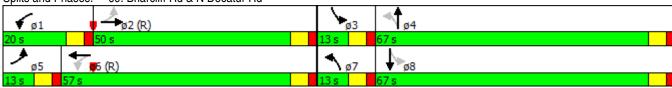
Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 79 (53%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 110


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.02 Intersection Signal Delay: 60.9 Intersection Capacity Utilization 92.3%

Intersection LOS: E ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 69: Briarcliff Rd & N Decatur Rd

Synchro 8 Report AM Peak Hour Page 49

	₩	×	À	*	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ň	↑ ↑		ř	↑ ↑		Ţ	^	7	¥	^	7
Volume (vph)	116	1263	85	256	797	80	287	638	321	120	392	109
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	200		100	300		400
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.991			0.986				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1787	3542	0	1787	3524	0	1770	3539	1583	1787	3574	1599
Flt Permitted	0.125			0.105			0.474			0.305		
Satd. Flow (perm)	235	3542	0	198	3524	0	883	3539	1583	574	3574	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		4			7				193			124
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1479			2251			1523			397	
Travel Time (s)		28.8			43.9			29.7			7.7	
Peak Hour Factor	0.97	0.97	0.97	0.91	0.91	0.91	0.95	0.95	0.95	0.88	0.88	0.88
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	2%	2%	2%	1%	1%	1%
Adj. Flow (vph)	120	1302	88	281	876	88	302	672	338	136	445	124
Shared Lane Traffic (%)												
Lane Group Flow (vph)	120	1390	0	281	964	0	302	672	338	136	445	124
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	9		12	3		12	3		12	3
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	20
Detector 1 Type	Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel		•			•						• • • • • • • • • • • • • • • • • • • •	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	7	4		3	8		1	6	. 01111	5	2	. 51111
Permitted Phases	4			8	- 0		6	U	6	2	L	2
- Cimillou i nases	4			U			U		U	۷		

PM Peak Hour Synchro 8 Report Page 1

	₩.	\mathbf{x}	À	F	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Detector Phase	7	4		3	8		1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	14.0	10.0		10.0	20.0		10.0	20.0	20.0	20.0	10.0	10.0
Total Split (s)	14.0	38.0		20.0	44.0		14.0	67.0	67.0	25.0	78.0	78.0
Total Split (%)	9.3%	25.3%		13.3%	29.3%		9.3%	44.7%	44.7%	16.7%	52.0%	52.0%
Maximum Green (s)	8.0	32.0		14.0	38.0		8.0	61.0	61.0	19.0	72.0	72.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	40.0	32.0		52.0	38.0		77.2	69.2	69.2	82.8	72.0	72.0
Actuated g/C Ratio	0.27	0.21		0.35	0.25		0.51	0.46	0.46	0.55	0.48	0.48
v/c Ratio	0.83	1.83		1.30	1.07		0.60	0.41	0.41	0.34	0.26	0.15
Control Delay	77.7	412.7		193.8	105.6		38.5	40.4	23.9	22.5	31.2	12.5
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	77.7	412.7		193.8	105.6		38.5	40.4	23.9	22.5	31.2	12.5
LOS	Е	F		F	F		D	D	С	С	С	В
Approach Delay		386.0			125.5			35.7			26.2	
Approach LOS		F			F			D			С	

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 60 (40%), Referenced to phase 2:SWTL and 6:NETL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.83

Intersection Signal Delay: 168.6 Intersection LOS: F Intersection Capacity Utilization 98.5% ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 2: Lavista Rd & N Druid Hills Rd

Synchro 8 Report PM Peak Hour

	۶	→	•	•	←	•	•	†	<i>></i>	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f,		ሻ	f)		7		7	7	1	7
Volume (vph)	45	331	90	85	301	169	82	552	128	104	695	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	11	12	12	10	12	14	12	12	10	12	10
Storage Length (ft)	150		0	200		0	200		450	125		0
Storage Lanes	1		0	1		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.968			0.946				0.850			0.850
Flt Protected	0.950	0.000		0.950			0.950			0.950		0.000
Satd. Flow (prot)	1636	1726	0	1787	1661	0	1869	1845	1568	1668	1881	1492
Flt Permitted	0.121			0.223			0.064			0.102		
Satd. Flow (perm)	208	1726	0	420	1661	0	126	1845	1568	179	1881	1492
Right Turn on Red			Yes	•		Yes	0		Yes			Yes
Satd. Flow (RTOR)		9			19				158			109
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		608			3518			1430			439	
Travel Time (s)		11.8			68.5			27.9			8.6	
Peak Hour Factor	0.97	0.97	0.97	0.87	0.87	0.87	0.81	0.81	0.81	0.91	0.91	0.91
Heavy Vehicles (%)	3%	3%	3%	1%	1%	1%	3%	3%	3%	1%	1%	1%
Adj. Flow (vph)	46	341	93	98	346	194	101	681	158	114	764	60
Shared Lane Traffic (%)	10	011		00	010	101	101	001	100		701	00
Lane Group Flow (vph)	46	434	0	98	540	0	101	681	158	114	764	60
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	2010	12	ı ııgı ı.	2010	12	ı uğını	20.0	14	g	20.0	14	. ug.it
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		. •			. •			. •				
Headway Factor	1.09	1.04	1.00	1.00	1.09	1.00	0.92	1.00	1.00	1.09	1.00	1.09
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	20
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	• · · · · ·	• · · · · · ·		· · · · · ·	· · · · · ·		· · · · · ·	· · · · · ·	• · · · · · ·	· · · · · ·	· · · · · ·	· · · · · ·
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)	0.0	94		0.0	94		0.0	94	0.0	0.0	94	0.0
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel		OTT EX			OTT EX			OTT EX			OTT EX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	3	8		рит-рі 7	4		рин т рі 1	6	i Gilli	рит-рі 5	2	1 01111
- I TOROGOU I HUSES	J	U		'	7		'	U		J	۷	

PM Peak Hour Synchro 8 Report Page 3

	•	-	\rightarrow	•	←	*	•	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	8			4			6		6	2		2
Detector Phase	3	8		7	4		1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	10.0	20.0		10.0	20.0		10.0	20.0	20.0	10.0	20.0	20.0
Total Split (s)	17.0	50.0		17.0	50.0		13.0	70.0	70.0	13.0	70.0	70.0
Total Split (%)	11.3%	33.3%		11.3%	33.3%		8.7%	46.7%	46.7%	8.7%	46.7%	46.7%
Maximum Green (s)	11.0	44.0		11.0	44.0		7.0	64.0	64.0	7.0	64.0	64.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	3.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	9.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	53.2	42.2		57.6	49.3		71.0	64.0	64.0	71.0	64.0	64.0
Actuated g/C Ratio	0.35	0.28		0.38	0.33		0.47	0.43	0.43	0.47	0.43	0.43
v/c Ratio	0.31	0.88		0.39	0.97		0.72	0.87	0.21	0.74	0.95	0.09
Control Delay	33.0	70.9		39.5	83.3		57.6	60.8	12.6	49.1	63.8	0.2
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.0	70.9		39.5	83.3		57.6	60.8	12.6	49.1	63.8	0.2
LOS	С	Е		D	F		Е	Е	В	D	Е	Α
Approach Delay		67.3			76.6			52.3			57.9	
Approach LOS		Е			Е			D			Е	

Area Type: Other

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 7 (5%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.97

Intersection Signal Delay: 61.6 Intersection LOS: E Intersection Capacity Utilization 91.2% ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 3: Briarcliff Rd & Lavista Rd

Synchro 8 Report PM Peak Hour

	ሻ	†	↓	» J	•	\
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	*	†	ĥ		W	
Volume (vph)	364	749	972	29	19	294
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.996		0.873	
Flt Protected	0.950				0.997	
Satd. Flow (prot)	1770	1863	1874	0	1637	0
Flt Permitted	0.950				0.997	
Satd. Flow (perm)	1770	1863	1874	0	1637	0
Link Speed (mph)		35	35		30	
Link Distance (ft)		312	634		666	
Travel Time (s)		6.1	12.4		15.1	
Peak Hour Factor	0.79	0.79	0.97	0.97	0.86	0.86
Heavy Vehicles (%)	2%	2%	1%	1%	1%	1%
Adj. Flow (vph)	461	948	1002	30	22	342
Shared Lane Traffic (%)						
Lane Group Flow (vph)	461	948	1032	0	364	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		26	26		12	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15			9	15	9
Sign Control		Free	Free		Stop	
Intersection Summary						

Other Area Type:

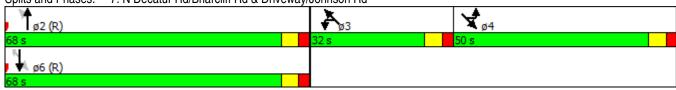
Control Type: Unsignalized

Intersection Capacity Utilization 102.3% Analysis Period (min) 15

ICU Level of Service G

Synchro 8 Report PM Peak Hour

	ሻ	†	Æ	Į,	ļ	¥J	•	×	>	•	×	•
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	ች	† }		ች	^	7	*	4			4	
Volume (vph)	35	439	19	66	628	494	338	62	21	60	115	33
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	250		0	250		150	150		0	0		0
Storage Lanes	1		0	1		1	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00
Frt		0.994				0.850		0.985			0.979	
Flt Protected	0.950			0.950			0.950	0.970			0.986	
Satd. Flow (prot)	1770	3518	0	1787	3574	1599	1681	1691	0	0	1816	0
Flt Permitted	0.309			0.334			0.950	0.970			0.986	
Satd. Flow (perm)	576	3518	0	628	3574	1599	1681	1691	0	0	1816	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3				426		4			5	
Link Speed (mph)		35			35			35			30	
Link Distance (ft)		2785			821			1807			309	
Travel Time (s)		54.3			16.0			35.2			7.0	
Peak Hour Factor	0.75	0.75	0.75	0.96	0.96	0.96	0.87	0.87	0.87	0.71	0.71	0.71
Heavy Vehicles (%)	2%	2%	2%	1%	1%	1%	2%	2%	2%	1%	1%	1%
Adj. Flow (vph)	47	585	25	69	654	515	389	71	24	85	162	46
Shared Lane Traffic (%)							38%				. •=	
Lane Group Flow (vph)	47	610	0	69	654	515	241	243	0	0	293	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	3		12	3		12	9		12	3
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Perm	NA	Perm	Split	NA		Split	NA	
Protected Phases		2			6		4	4		3	3	
Permitted Phases	2			6		6						
Minimum Split (s)	22.5	22.5		22.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (s)	68.0	68.0		68.0	68.0	68.0	50.0	50.0		32.0	32.0	
Total Split (%)	45.3%	45.3%		45.3%	45.3%	45.3%	33.3%	33.3%		21.3%	21.3%	
Maximum Green (s)	61.5	61.5		61.5	61.5	61.5	43.5	43.5		25.5	25.5	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.5	2.5		2.5	2.5	2.5	2.5	2.5		2.5	2.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)	6.5	6.5		6.5	6.5	6.5	6.5	6.5			6.5	
Lead/Lag							Lag	Lag		Lead	Lead	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Act Effct Green (s)	61.5	61.5		61.5	61.5	61.5	43.5	43.5			25.5	
Actuated g/C Ratio	0.41	0.41		0.41	0.41	0.41	0.29	0.29			0.17	
v/c Ratio	0.20	0.42		0.27	0.45	0.57	0.49	0.49			0.94	
Control Delay	27.9	25.5		38.2	39.6	16.7	48.3	47.5			97.3	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Delay	27.9	25.5		38.2	39.6	16.7	48.3	47.5			97.3	


Synchro 8 Report Page 6 PM Peak Hour

Analysis Period (min) 15

7: N Decatur Rd/Briarcliff Rd & Driveway/Johnson Rd

	ኘ	†	r*	Ļ	↓	M	•	\mathbf{x}	>	€	×	*
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
LOS	С	С		D	D	В	D	D			F	
Approach Delay		25.7			30.0			47.9			97.3	
Approach LOS		С			С			D			F	
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 1	50											
Offset: 38 (25%), Referen	ced to phase 2	2:NBTL a	ınd 6:SBT	L, Start o	f Green							
Natural Cycle: 70												
Control Type: Pretimed												
Maximum v/c Ratio: 0.94												
Intersection Signal Delay:	39.6			Int	ersection	LOS: D						
Intersection Capacity Utili	zation 64.7%			IC	U Level o	f Service	С					

Splits and Phases: 7: N Decatur Rd/Briarcliff Rd & Driveway/Johnson Rd

PM Peak Hour Synchro 8 Report

	ሻ	†	٦٩	Į,	↓	W	•	*	\	€	×	•
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4₽	7	7	∱ ∱			4			4	7
Volume (vph)	0	634	257	404	912	0	0	3	0	305	0	505
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	14	11	10	12	12	12	12	12	12
Storage Length (ft)	316		0	150		0	0		0	0		0
Storage Lanes	1		1	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor											1.00	0.98
Frt			0.850									0.850
Flt Protected				0.950							0.950	
Satd. Flow (prot)	0	3421	1531	1906	3455	0	0	1900	0	0	1787	1599
Flt Permitted	_		, , ,	0.223		•			-		0.756	1000
Satd. Flow (perm)	0	3421	1531	447	3455	0	0	1900	0	0	1418	1561
Right Turn on Red		0.2.	Yes		0.00	Yes	•	1000	Yes			Yes
Satd. Flow (RTOR)			298						100			478
Link Speed (mph)		35	200		35			35			35	170
Link Distance (ft)		821			312			355			1189	
Travel Time (s)		16.0			6.1			6.9			23.2	
Confl. Peds. (#/hr)		10.0			0.1			0.0	3	3	20.2	13
Peak Hour Factor	0.79	0.79	0.79	0.96	0.96	0.96	0.92	0.92	0.92	0.89	0.89	0.89
Heavy Vehicles (%)	2%	2%	2%	1%	1%	1%	0.92	0.32	0.92	1%	1%	1%
Parking (#/hr)	2/0	2/0	∠ /0	1 /0	1 /0	1 /0	U /0	U /0	0	1 /0	1 /0	1 /0
Adj. Flow (vph)	0	803	325	421	950	0	0	3	0	343	0	567
Shared Lane Traffic (%)	U	000	323	421	930	U	U	3	U	343	U	307
Lane Group Flow (vph)	0	803	325	421	950	0	0	3	0	0	343	567
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	14	rtigrit	Leit	14	riigiit	Leit	0	Hight	Leit	0	riigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.04	1.04	1.04	0.92	1.04	1.09	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.04	1.04	1.04	15	1.04	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	1	2	1	1	2	9	13	2	9	1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (ft)	20	100	night 20	20	100		20	100		20	100	nigiti 20
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	0
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	0
` ,	20	6	20		6		20	6		20	6	
Detector 1 Size(ft)		Cl+Ex		20			Cl+Ex					20
Detector 1 Type	Cl+Ex	UI+EX	Cl+Ex	Cl+Ex	Cl+Ex		CI+EX	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												

Synchro 8 Report Page 8 PM Peak Hour

	ሻ	†	r ⁴	Ļ	ļ	W	•	\mathbf{x}	>	€	×	*
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases		6		5	2			4			8	
Permitted Phases	6	6	6	2	2		4			8		8
Detector Phase	6	6	6	5	2		4	4		8	8	8
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	4.0	10.0		7.0	7.0		7.0	7.0	7.0
Minimum Split (s)	23.0	23.0	23.0	10.0	23.0		22.3	22.3		22.3	22.3	22.3
Total Split (s)	55.0	55.0	55.0	40.0	95.0		55.0	55.0		55.0	55.0	55.0
Total Split (%)	36.7%	36.7%	36.7%	26.7%	63.3%		36.7%	36.7%		36.7%	36.7%	36.7%
Maximum Green (s)	48.0	48.0	48.0	34.5	88.0		48.7	48.7		48.7	48.7	48.7
Yellow Time (s)	4.5	4.5	4.5	3.0	4.5		3.8	3.8		3.8	3.8	3.8
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5		2.5	2.5		2.5	2.5	2.5
Lost Time Adjust (s)		0.0	0.0	0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)		7.0	7.0	5.5	7.0			6.3			6.3	6.3
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	C-Max	C-Max	C-Max	None	C-Max		None	None		None	None	None
Act Effct Green (s)		63.7	63.7	96.2	94.7			42.0			42.0	42.0
Actuated g/C Ratio		0.42	0.42	0.64	0.63			0.28			0.28	0.28
v/c Ratio		0.55	0.40	0.79	0.44			0.01			0.86	0.73
Control Delay		44.0	12.3	27.9	8.6			34.7			72.1	13.3
Queue Delay		0.0	0.0	0.0	0.0			0.0			0.0	0.0
Total Delay		44.0	12.3	27.9	8.6			34.7			72.1	13.3
LOS		D	В	С	Α			С			Е	В
Approach Delay		34.9			14.6			34.7			35.5	
Approach LOS		С			В			С			D	

Area Type: Other

Cycle Length: 150
Actuated Cycle Length: 150

Offset: 8 (5%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86 Intersection Signal Delay: 26.9 Intersection Capacity Utilization 83.2%

Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 8: Briarcliff Rd & Clifton Rd/Driveway

PM Peak Hour Synchro 8 Report

	†	r*	Į,	↓	€	*
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	↑ ↑			4₽	W	
Volume (vph)	650	1	55	26	0	208
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	1.00
Frt					0.865	
Flt Protected				0.967		
Satd. Flow (prot)	3574	0	0	3293	1644	0
Flt Permitted				0.967		
Satd. Flow (perm)	3574	0	0	3293	1644	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	351			484	251	
Travel Time (s)	8.0			11.0	5.7	
Peak Hour Factor	0.86	0.86	0.74	0.74	0.79	0.79
Heavy Vehicles (%)	1%	1%	6%	6%	0%	0%
Adj. Flow (vph)	756	1	74	35	0	263
Shared Lane Traffic (%)						
Lane Group Flow (vph)	757	0	0	109	263	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	0			0	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						

Other Area Type:

Control Type: Unsignalized

Intersection Capacity Utilization 44.2% Analysis Period (min) 15

ICU Level of Service A

Synchro 8 Report PM Peak Hour

	7	*	À	~	*	₹	ን	×	~	Ĺ	×	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	ħβ		ሻ	^	7	ሻ	*	7	ች	f.	
Volume (vph)	232	713	59	52	511	299	227	352	299	198	35	92
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	480		0	227		52	0		0	100		0
Storage Lanes	1		0	1		1	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	1.00		0.99		0.94	1.00		0.96	0.99	0.99	
Frt		0.989				0.850			0.850		0.891	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1787	3527	0	1770	3539	1583	1787	1881	1599	1805	1670	0
Flt Permitted	0.306			0.258			0.586			0.148		
Satd. Flow (perm)	570	3527	0	478	3539	1482	1099	1881	1539	279	1670	0
Right Turn on Red		00-	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7	100			176			249		94	100
Link Speed (mph)		35			35			30			30	
Link Distance (ft)		625			693			484			1787	
Travel Time (s)		12.2			13.5			11.0			40.6	
Confl. Peds. (#/hr)	22		21	21	10.0	22	5		20	20	10.0	5
Peak Hour Factor	0.91	0.91	0.91	0.97	0.97	0.97	0.89	0.89	0.89	0.88	0.88	0.88
Heavy Vehicles (%)	1%	1%	1%	2%	2%	2%	1%	1%	1%	0%	0%	0%
Adj. Flow (vph)	255	784	65	54	527	308	255	396	336	225	40	105
Shared Lane Traffic (%)	200	701	00	O I	OLI	000	200	000	000	LLU	10	100
Lane Group Flow (vph)	255	849	0	54	527	308	255	396	336	225	145	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	12	rugin	Lon	12	rugut	Loit	12	riigiit	Loit	12	rugin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	1	2	3	1	2	1	1	2	1	1	2	3
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector (ft)	20	100		20	100	20	20	100	20	20	100	
Trailing Detector (ft)	0	0		0	0	0	0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0	0	0	0	
Detector 1 Size(ft)	20	6		20	6	20	20	6	20	20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel	OITLX	OITLX		OITLX	OITLX	OITLX	OITLX	OITLX	OITLX	OITLX	OITLX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)	0.0	94		0.0	94	0.0	0.0	94	0.0	0.0	94	
` '		6			6			6			6	
Detector 2 Size(ft)		Cl+Ex			Cl+Ex						CI+Ex	
Detector 2 Type		UI+EX			OI+EX			Cl+Ex			UI+EX	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	n	0.0		n	0.0	Daves	m.m 1	0.0	Daves	mm	0.0	
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	

Synchro 8 Report Page 11 PM Peak Hour

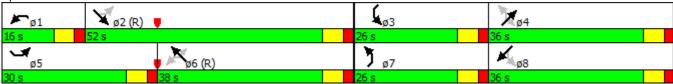
	-	\mathbf{x}	À	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2			6		6	4		4	8		
Detector Phase	5	2		1	6	6	7	4	4	3	8	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	15.0	21.5		12.0	21.5	21.5	15.0	21.5	21.5	15.0	12.0	
Total Split (s)	30.0	52.0		16.0	38.0	38.0	26.0	36.0	36.0	26.0	36.0	
Total Split (%)	23.1%	40.0%		12.3%	29.2%	29.2%	20.0%	27.7%	27.7%	20.0%	27.7%	
Maximum Green (s)	24.0	46.0		10.0	32.0	32.0	20.0	30.0	30.0	20.0	30.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None	None	None	None	
Act Effct Green (s)	65.1	53.8		50.0	42.4	42.4	47.7	30.4	30.4	46.1	29.6	
Actuated g/C Ratio	0.50	0.41		0.38	0.33	0.33	0.37	0.23	0.23	0.35	0.23	
v/c Ratio	0.58	0.58		0.21	0.46	0.51	0.52	0.90	0.61	0.77	0.32	
Control Delay	25.5	32.9		33.6	54.3	37.0	30.2	72.8	17.1	47.2	17.9	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	25.5	32.9		33.6	54.3	37.0	30.2	72.8	17.1	47.2	17.9	
LOS	С	С		С	D	D	С	Е	В	D	В	
Approach Delay		31.2			47.1			42.8			35.7	
Approach LOS		С			D			D			D	

Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 42 (32%), Referenced to phase 2:SETL and 6:NWTL, Start of Green

Natural Cycle: 80


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90

Intersection Signal Delay: 39.3 Intersection LOS: D
Intersection Capacity Utilization 76.5% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 13: Houston Mill Road/Houston Mill Rd & Clifton Rd

PM Peak Hour Synchro 8 Report

	-	•	•	←	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	∱ }			4₽	, A	
Volume (vph)	870	0	0	830	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	1.00
Frt						
Flt Protected						
Satd. Flow (prot)	3471	0	0	3471	1863	0
Flt Permitted						
Satd. Flow (perm)	3471	0	0	3471	1863	0
Link Speed (mph)	35			35	30	
Link Distance (ft)	618			147	312	
Travel Time (s)	12.0			2.9	7.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	4%	4%	4%	4%	2%	2%
Adj. Flow (vph)	946	0	0	902	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	946	0	0	902	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 27.4% Analysis Period (min) 15

ICU Level of Service A

Synchro 8 Report PM Peak Hour

	۶	→	•	•	←	•	4	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĥ		ሻ	ĵ.		ሻ	∱ }		*	∱ }	
Volume (vph)	194	77	48	35	45	205	28	537	12	327	935	202
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	10	10	10	10	12	10	10	12	9	9	10
Storage Length (ft)	100		0	280		0	135		0	110		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	0.98		0.93	0.99		0.99	1.00		0.99	0.99	
Frt		0.943			0.877			0.997			0.973	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1620	1574	0	1652	1507	0	1620	3225	0	1593	3058	0
Flt Permitted	0.182			0.668			0.186			0.308		
Satd. Flow (perm)	310	1574	0	1083	1507	0	314	3225	0	512	3058	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		30			164			2			23	
Link Speed (mph)		30			30			35			35	
Link Distance (ft)		671			1358			1232			781	
Travel Time (s)		15.3			30.9			24.0			15.2	
Confl. Peds. (#/hr)	2		63	63		2	43		24	24		43
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.93	0.93	0.93	0.95	0.95	0.95
Heavy Vehicles (%)	4%	4%	4%	2%	2%	2%	4%	4%	4%	2%	2%	2%
Adj. Flow (vph)	216	86	53	39	50	228	30	577	13	344	984	213
Shared Lane Traffic (%)												
Lane Group Flow (vph)	216	139	0	39	278	0	30	590	0	344	1197	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		10	, ,		10			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.00	1.09	1.09	1.00	1.14	1.14	1.09
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	CI+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel		5 .			J _			J L A			J., L A	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
		0.0			0.0			0.0			0.0	

Synchro 8 Report Page 14 PM Peak Hour

	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4			8		1	6		5	2	
Permitted Phases	4			8			6			2		
Detector Phase	7	4		8	8		1	6		5	2	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	9.5	21.8		21.8	21.8		9.2	21.1		9.0	21.1	
Total Split (s)	25.0	61.0		36.0	36.0		14.0	40.0		29.0	55.0	
Total Split (%)	19.2%	46.9%		27.7%	27.7%		10.8%	30.8%		22.3%	42.3%	
Maximum Green (s)	19.5	55.2		30.2	30.2		8.8	34.9		24.0	49.9	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.1		3.0	3.1	
All-Red Time (s)	2.5	2.8		2.8	2.8		2.2	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.5	5.8		5.8	5.8		5.2	5.1		5.0	5.1	
Lead/Lag	Lead			Lag	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Act Effct Green (s)	40.9	40.6		16.5	16.5		58.7	52.2		78.6	71.1	
Actuated g/C Ratio	0.31	0.31		0.13	0.13		0.45	0.40		0.60	0.55	
v/c Ratio	0.76	0.27		0.28	0.83		0.14	0.46		0.71	0.71	
Control Delay	51.1	25.2		52.8	42.1		20.9	31.8		33.9	20.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	51.1	25.2		52.8	42.1		20.9	31.8		33.9	20.3	
LOS	D	С		D	D		С	С		С	С	
Approach Delay		40.9			43.4			31.3			23.4	
Approach LOS		D			D			С			С	

Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 72 (55%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83 Intersection Signal Delay: 29.5 Intersection Capacity Utilization 80.2%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 18: Clifton Rd & Asbury Cir/Haygood Dr

Synchro 8 Report PM Peak Hour

	₩	×	À	_	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	∱ }		7	∱ ∱			4			4	
Volume (vph)	28	1172	14	13	821	91	10	3	33	132	1	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	200		0	0		0	0		0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor											0.99	
Frt		0.998			0.985			0.903			0.970	
Flt Protected	0.950			0.950				0.989			0.963	
Satd. Flow (prot)	1770	3532	0	1752	3452	0	0	1664	0	0	1730	0
Flt Permitted	0.242			0.173				0.929			0.770	
Satd. Flow (perm)	451	3532	0	319	3452	0	0	1563	0	0	1379	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			16			43			10	
Link Speed (mph)		35			35			30			30	
Link Distance (ft)		693			781			193			374	
Travel Time (s)		13.5			15.2			4.4			8.5	
Confl. Peds. (#/hr)										3		10
Peak Hour Factor	0.93	0.93	0.93	0.91	0.91	0.91	0.77	0.77	0.77	0.85	0.85	0.85
Heavy Vehicles (%)	2%	2%	2%	3%	3%	3%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	30	1260	15	14	902	100	13	4	43	155	1	44
Shared Lane Traffic (%)												
Lane Group Flow (vph)	30	1275	0	14	1002	0	0	60	0	0	200	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	•		0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
				' '								

Synchro 8 Report Page 16 PM Peak Hour

	-	\mathbf{x}	Ž	*	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Protected Phases	1	6		5	2			4			8	
Permitted Phases	6			2			4			8		
Detector Phase	1	6		5	2		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	10.6	21.6		10.6	21.6		10.0	10.0		10.0	10.0	
Total Split (s)	16.0	82.0		16.0	82.0		32.0	32.0		32.0	32.0	
Total Split (%)	12.3%	63.1%		12.3%	63.1%		24.6%	24.6%		24.6%	24.6%	
Maximum Green (s)	10.4	76.4		10.4	76.4		26.0	26.0		26.0	26.0	
Yellow Time (s)	3.6	3.6		3.6	3.6		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)	5.6	5.6		5.6	5.6			6.0			6.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	94.3	91.7		92.7	89.1			22.0			22.0	
Actuated g/C Ratio	0.73	0.71		0.71	0.69			0.17			0.17	
v/c Ratio	0.08	0.51		0.05	0.42			0.20			0.83	
Control Delay	2.4	10.7		4.9	6.7			19.4			75.9	
Queue Delay	0.0	0.4		0.0	0.0			0.0			0.0	
Total Delay	2.4	11.2		4.9	6.7			19.4			75.9	
LOS	Α	В		Α	Α			В			Е	
Approach Delay		11.0			6.7			19.4			75.9	
Approach LOS		В			Α			В			Е	

Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 63 (48%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 55

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83

Intersection Signal Delay: 14.5Intersection LOS: BIntersection Capacity Utilization 59.0%ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 19: Driveway/Gatewood Rd & Clifton Rd

	۶	→	•	•	←	•	4	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		€Î}		ሻ	∱ }		ሻ	4	7		4	
Volume (vph)	13	678	39	49	751	9	387	1	201	15	1	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	13	12	12	12	11	12	12	12	12	12
Storage Length (ft)	260		0	500		0	0		0	0		0
Storage Lanes	0		0	1		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	0.95	1.00	0.95	0.95	0.95	0.91	0.95	1.00	1.00	1.00
Ped Bike Factor		1.00					1.00	1.00			0.99	
Frt		0.992			0.998			0.985	0.850		0.921	
Flt Protected		0.999		0.950			0.950	0.957			0.981	
Satd. Flow (prot)	0	3467	0	1787	3567	0	1641	1614	1519	0	1652	0
Flt Permitted		0.932		0.301			0.790	0.729			0.605	
Satd. Flow (perm)	0	3234	0	566	3567	0	1361	1226	1519	0	1019	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7			2			4	220		28	
Link Speed (mph)		35			35			30			30	
Link Distance (ft)		1743			618			453			209	
Travel Time (s)		34.0			12.0			10.3			4.8	
Confl. Peds. (#/hr)	20		20				2					2
Peak Hour Factor	0.94	0.94	0.94	0.89	0.89	0.89	0.82	0.82	0.82	0.81	0.81	0.81
Heavy Vehicles (%)	3%	3%	3%	1%	1%	1%	1%	1%	1%	3%	3%	3%
Adj. Flow (vph)	14	721	41	55	844	10	472	1	245	19	1	28
Shared Lane Traffic (%)							47%		10%			
Lane Group Flow (vph)	0	776	0	55	854	0	250	248	220	0	48	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	, i		12			11	, i		11	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	0.96	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel		J _			J _			-			_	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
= 10000 E Exterior (0)		0.0			0.0			0.0			0.0	

Synchro 8 Report Page 18 PM Peak Hour

	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	D.Pm	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		2		1	6			8			3	
Permitted Phases	6			6			8		8	3		
Detector Phase	6	2		1	6		8	8	8	3	3	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	21.5	21.5		10.0	21.5		18.0	18.0	18.0	18.0	18.0	
Total Split (s)	100.0	82.0		18.0	100.0		30.0	30.0	30.0	30.0	30.0	
Total Split (%)	76.9%	63.1%		13.8%	76.9%		23.1%	23.1%	23.1%	23.1%	23.1%	
Maximum Green (s)	94.0	76.0		12.0	94.0		24.0	24.0	24.0	24.0	24.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0		0.0	0.0	0.0		0.0	
Total Lost Time (s)		6.0		6.0	6.0		6.0	6.0	6.0		6.0	
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	C-Max	C-Max		None	C-Max		None	None	None	Max	Max	
Act Effct Green (s)		83.7		94.0	94.0		24.0	24.0	24.0		24.0	
Actuated g/C Ratio		0.64		0.72	0.72		0.18	0.18	0.18		0.18	
v/c Ratio		0.37		0.12	0.33		1.00	1.08	0.48		0.23	
Control Delay		11.4		5.7	6.9		108.7	131.9	9.5		26.6	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0		0.0	
Total Delay		11.4		5.7	6.9		108.7	131.9	9.5		26.6	
LOS		В		Α	Α		F	F	Α		С	
Approach Delay		11.4			6.9			86.3			26.6	
Approach LOS		В			Α			F			С	

Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 45 (35%), Referenced to phase 2:EBT and 6:EBWB, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.08

Intersection Signal Delay: 32.0 Intersection LOS: C
Intersection Capacity Utilization 70.2% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 21: CDC Entrance/Driveway & Clifton Rd

	•	\mathbf{x}	*	₹	Ĺ	*
Lane Group	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	ሻ	† †	^	7	ሻ	7
Volume (vph)	29	775	847	44	109	141
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	11	10	8	1000	10
Storage Length (ft)	132		10	110	0	0
Storage Lanes	1			1	1	1
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
	1.00	0.95	0.95		1.00	
Frt	0.050			0.850	0.050	0.850
Flt Protected	0.950	0.404	0000	4047	0.950	4507
Satd. Flow (prot)	1652	3421	3336	1247	1685	1507
Flt Permitted	0.265			10.5	0.950	
Satd. Flow (perm)	461	3421	3336	1247	1685	1507
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				30		207
Link Speed (mph)		35	35		30	
Link Distance (ft)		531	625		322	
Travel Time (s)		10.3	12.2		7.3	
Peak Hour Factor	0.94	0.94	0.93	0.93	0.68	0.68
Heavy Vehicles (%)	2%	2%	1%	1%	0%	0%
Parking (#/hr)			. , ,	0	0,0	0,0
Adj. Flow (vph)	31	824	911	47	160	207
Shared Lane Traffic (%)	01	UL-T	011	77	100	201
Lane Group Flow (vph)	31	824	911	47	160	207
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		12	12		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.04	1.09	1.37	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	1	1
Detector Template	Left	Thru	Thru	Right	Left	Right
Leading Detector (ft)	20	100	100	20	20	20
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	6	20	20	20
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel	OITEX	OITEX	OLICA	OHELA	OII-LX	OT !- LX
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
. ,	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)						
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94	94			
Detector 2 Size(ft)		6	6			
Detector 2 Type		Cl+Ex	Cl+Ex			
Detector 2 Channel						
Detector 2 Extend (s)						
Detector 2 Exterio (5)		0.0	0.0			

Synchro 8 Report Page 20 PM Peak Hour

	J	×	×	₹	Ĺ	*	
Lane Group	SEL	SET	NWT	NWR	SWL	SWR	
Protected Phases	1	6	2		8		
Permitted Phases	6			2		8	
Detector Phase	1	6	2	2	8	8	
Switch Phase							
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	9.5	21.5	21.5	21.5	21.5	21.5	
Total Split (s)	15.0	76.0	61.0	61.0	44.0	44.0	
Total Split (%)	12.5%	63.3%	50.8%	50.8%	36.7%	36.7%	
Maximum Green (s)	9.5	70.5	55.5	55.5	38.5	38.5	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5	
Lead/Lag	Lead		Lag	Lag			
Lead-Lag Optimize?	Yes		Yes	Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	C-Max	C-Max	C-Max	None	None	
Act Effct Green (s)	92.2	92.2	85.0	85.0	16.8	16.8	
Actuated g/C Ratio	0.77	0.77	0.71	0.71	0.14	0.14	
v/c Ratio	0.07	0.31	0.39	0.05	0.68	0.53	
Control Delay	4.6	5.0	8.9	4.4	62.9	11.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	4.6	5.0	8.9	4.4	62.9	11.0	
LOS	Α	Α	Α	Α	Е	В	
Approach Delay		5.0	8.7		33.6		
Approach LOS		Α	Α		С		
Intersection Summary							
Area Type:	Other						
Cycle Length: 120							
Actuated Cycle Length: 120							
Offset: 0 (0%), Referenced t	o phase 2	:NWT and	d 6:SETL,	Start of 0	Green		
Natural Cycle: 60							
Control Type: Actuated-Coo	rdinated						
Maximum v/c Ratio: 0.68							
Intersection Signal Delay: 11	1.4			lr	tersectio	n LOS: B	
Intersection Capacity Utiliza	tion 41.3%)		IC	CU Level	of Service	A
Analysis Period (min) 15							
Splits and Phases: 24: Cli	ifton Rd &	Emory Co	onf Cntr				
ø1 ø2 (F		, ,	-				
15 s 61 s	y						
₩ ø6 (R)							™

Synchro 8 Report Page 21 PM Peak Hour

	۶	→	•	•	←	•	4	†	<i>></i>	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱			4	7		4T+		44	ĵ»	
Volume (vph)	163	396	34	0	445	336	5	100	24	410	442	351
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	8	12	12	12	11	11	10	10	10	10
Storage Length (ft)	150		0	0		0	0		0	200		0
Storage Lanes	1		0	0		1	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	0.95	0.97	1.00	1.00
Frt		0.988				0.850		0.972			0.934	
Flt Protected	0.950							0.998		0.950		
Satd. Flow (prot)	1770	3497	0	0	1845	1568	0	3319	0	3173	1608	0
Flt Permitted	0.111							0.921		0.950		
Satd. Flow (perm)	207	3497	0	0	1845	1568	0	3063	0	3173	1608	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		8				295		19			46	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1444			1181			1262			1113	
Travel Time (s)		28.1			23.0			24.6			21.7	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.83	0.83	0.83	0.93	0.93	0.93
Heavy Vehicles (%)	2%	2%	2%	3%	3%	3%	2%	2%	2%	3%	3%	3%
Adj. Flow (vph)	181	440	38	0	494	373	6	120	29	441	475	377
Shared Lane Traffic (%)	101	110			101	0,0		120			170	011
Lane Group Flow (vph)	181	478	0	0	494	373	0	155	0	441	852	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	2011	12	g	20.0	12	g	20.0	20	g	2011	20	i iigiii
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											10	
Headway Factor	1.00	1.00	1.20	1.00	1.00	1.00	1.04	1.04	1.09	1.09	1.09	1.09
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.04	9	15	1.00	9
Number of Detectors	1	2		1	2	1	1	2		1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6		20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel	OHEX	OITEX		OHEX	OITEX	OITEX	OHEX	OHEX		OITEX	OITEX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	94		0.0	94	0.0	0.0	94		0.0	94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel		OITLA			OITLA			OITLA			OITLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
` ,	nmınt	NA		Perm	NA	Perm	Perm	NA		Prot	NA	
Turn Type Protected Phases	pm+pt			reiiii		reiiii	reiiii					
FIGUREGIEU PHASES	1	6			2			8		7	4	

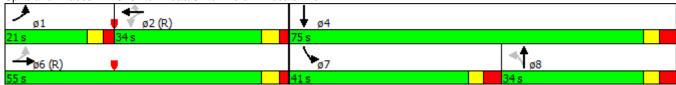
	•	-	\rightarrow	•	•	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	6			2		2	8					
Detector Phase	1	6		2	2	2	8	8		7	4	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	3.5	3.5		4.0	4.0	
Minimum Split (s)	9.1	20.0		20.0	20.0	20.0	10.0	10.0		10.5	20.0	
Total Split (s)	21.0	55.0		34.0	34.0	34.0	34.0	34.0		41.0	75.0	
Total Split (%)	16.2%	42.3%		26.2%	26.2%	26.2%	26.2%	26.2%		31.5%	57.7%	
Maximum Green (s)	15.9	49.5		28.5	28.5	28.5	27.5	27.5		34.5	68.5	
Yellow Time (s)	3.0	3.5		3.5	3.5	3.5	3.0	3.0		3.0	3.0	
All-Red Time (s)	2.1	2.0		2.0	2.0	2.0	3.5	3.5		3.5	3.5	
Lost Time Adjust (s)	0.0	0.0			0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.5			5.5	5.5		6.5		6.5	6.5	
Lead/Lag	Lead			Lag	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes			Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	50.2	49.8			30.9	30.9		38.4		23.4	68.2	
Actuated g/C Ratio	0.39	0.38			0.24	0.24		0.30		0.18	0.52	
v/c Ratio	0.74	0.36			1.13	0.62		0.17		0.77	0.98	
Control Delay	48.5	29.2			127.3	15.5		31.4		55.8	43.7	
Queue Delay	0.0	0.0			0.0	0.0		0.0		0.0	0.0	
Total Delay	48.5	29.2			127.3	15.5		31.4		55.8	43.7	
LOS	D	С			F	В		С		Е	D	
Approach Delay		34.5			79.2			31.4			47.8	
Approach LOS		С			Е			С			D	

Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 62 (48%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green

Natural Cycle: 100


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.13

Intersection Signal Delay: 53.2 Intersection LOS: D
Intersection Capacity Utilization 103.8% ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 28: Clifton Road/Clifton Rd & N Decatur Rd

Lane Configurations		_≉	→	7	_	←	٤	•	×	/	Ļ	×	~
Volume (cyfn)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Volume (vph) 56	Lane Configurations		4	7		4	7	7	†	7	*	†	7
Storage Length (ft)	Volume (vph)	56		43	12		10			22	11	855	7
Storage Length (ft)		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lanes		0		0	0		0	175		0	150		150
Taper Length (ff)		0		1	0		1	1		1	1		1
Lane Util. Factor		25			25			25			25		
File Principate 0.950		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
File Principate 0.950	Frt			0.850			0.850			0.850			0.850
Fit Permitted	Flt Protected		0.950			0.950		0.950			0.950		
Fit Permitted	Satd. Flow (prot)	0		1615	0		1615		1863	1583		1863	1583
Satd. Flow (perm) 0													
Fight Turn on Red Fight		0		1615	0		1615		1863	1583		1863	1583
Satid. Flow (RTOR)													
Link Speed (mph)	•												
Link Distance (ft) 226			30			30			35			35	
Travel Time (s)	,												
Peak Hour Factor 0.71 0.71 0.71 0.92 0.92 0.92 0.98 0.98 0.98 0.92 0.													
Heavy Vehicles (%)		0.71		0.71	0.92		0.92	0.98		0.98	0.92		0.92
Adj. Flow (vph)													
Shared Lane Traffic (%) Lane Group Flow (vph) 0 79 61 0 13 11 5 856 22 12 929 8 Enter Blocked Intersection No No No No No No No	• • • • • • • • • • • • • • • • • • • •												
Lane Group Flow (vph)		, 0		•	. •		• •					0_0	
Enter Blocked Intersection No No No No No No No	` ,	0	79	61	0	13	11	5	856	22	12	929	8
Left Left Right Left Right Left Right Left Right Left Left Right Left Right Left Right Right Left Right Right													
Median Width(fft)													
Link Offset(fft)				9			3			3			3
Crosswalk Width(fft)	. ,												
Two way Left Turn Lane	` ,												
Headway Factor 1.00	. ,												
Turning Speed (mph) 15		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Number of Detectors 1 2 1 2 1 1 2 1 1 2 1 1	-												
Leading Detector (ft) 20 100 20 20 100 20 20 100 20 20 100 20 20 100 20 20 100 20 20 100 20 20 100 0		1	2	1	1	2	1	1	2	1	1	2	
Leading Detector (ft) 20 100 20 100 20 100 20 20 100 20 20 100 20 20 100 20 20 100 20 20 100 20 20 0	Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Trailing Detector (ft) 0	·												
Detector 1 Position(fft) 0 0 0 0 0 0 0 0 0		0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft) 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20 </td <td></td> <td>0</td>		0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Type CI+Ex		20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Channel Detector 1 Extend (s) 0.0	` ,	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Extend (s) 0.0													
Detector 1 Queue (s) 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s) 0.0	· /												
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type Cl+Ex Cl+Ex Cl+Ex Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Perm NA Perm NA Perm pm+pt NA Perm Protected Phases 4 8 5 2 1 6													
Detector 2 Size(ft) 6 6 6 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Turn Type Perm NA Perm NA Perm Pm+pt NA Perm pm+pt NA Perm Protected Phases 4 8 5 2 1 6													
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Turn Type Perm NA Perm NA Perm Pm+pt NA Perm Pm+pt NA Perm Protected Phases 4 8 5 2 1 6	` '												
Detector 2 Channel Outcome of the control	. ,		Cl+Ex			CI+Ex						Cl+Ex	
Detector 2 Extend (s) 0.0						•							
Turn Type Perm NA Perm Perm NA Perm pm+pt NA Perm pm+pt NA Perm Protected Phases 4 8 5 2 1 6			0.0			0.0			0.0			0.0	
Protected Phases 4 8 5 2 1 6	, ,	Perm		Perm	Perm		Perm	pm+pt		Perm	pm+pt		Perm
				. 3	. 3								2
	Permitted Phases	4	•	4	8		8	2		2	6		6

Synchro 8 Report Page 24 PM Peak Hour

	_≠	→	7	*	•	٤	•	×	/	Ĺ	×	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	9.0	20.0	20.0	9.0	20.0	20.0
Total Split (s)	35.0	35.0	35.0	35.0	35.0	35.0	15.0	100.0	100.0	15.0	100.0	100.0
Total Split (%)	23.3%	23.3%	23.3%	23.3%	23.3%	23.3%	10.0%	66.7%	66.7%	10.0%	66.7%	66.7%
Maximum Green (s)	30.0	30.0	30.0	30.0	30.0	30.0	10.0	95.0	95.0	10.0	95.0	95.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)		13.7	13.7		13.7	13.7	124.2	122.0	122.0	125.4	124.2	124.2
Actuated g/C Ratio		0.09	0.09		0.09	0.09	0.83	0.81	0.81	0.84	0.83	0.83
v/c Ratio		0.61	0.30		0.12	0.06	0.01	0.57	0.02	0.03	0.60	0.01
Control Delay		84.4	17.2		62.3	0.6	2.0	9.7	0.0	5.0	22.0	0.0
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		84.4	17.2		62.3	0.6	2.0	9.8	0.0	5.0	22.0	0.0
LOS		F	В		Е	Α	Α	Α	Α	Α	С	Α
Approach Delay		55.1			34.0			9.5			21.6	
Approach LOS		Ε			С			Α			С	

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 124 (83%), Referenced to phase 2:NETL and 6:SWTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.61 Intersection Signal Delay: 18.7 Intersection Capacity Utilization 64.2%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 29: Briarcliff Rd & Summit Pointe Way

	_≠	7	•	*	K	~	
Lane Group	EBL	EBR	NEL	NET	SWT	SWR	ø4
Lane Configurations	***			414	ħβ		*
Volume (vph)	625	34	18	652	553	216	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	11	11	11	10	
Storage Length (ft)	100	0	0		• •	0	
Storage Lanes	1	0	0			0	
Taper Length (ft)	25	•	25				
Lane Util. Factor	0.97	0.95	0.95	0.95	0.95	0.95	
Ped Bike Factor	0.99	0.00	0.00	1.00	0.99	0.00	
Frt	0.992			1.00	0.958		
Flt Protected	0.955			0.999	0.000		
Satd. Flow (prot)	3227	0	0	3385	3254	0	
Flt Permitted	0.955	U	U	0.915	0204	U	
Satd. Flow (perm)	3198	0	0	3100	3254	0	
Right Turn on Red	0100	Yes	U	0100	ULUT	Yes	
Satd. Flow (RTOR)	4	163			37	1 63	
Link Speed (mph)	30			35	35		
Link Distance (ft)	1021			1039	599		
Travel Time (s)	23.2			20.2	11.7		
Confl. Peds. (#/hr)	23.2		3	20.2	11.7	3	
Peak Hour Factor	0.93	0.93	0.89	0.89	0.94	0.94	
Heavy Vehicles (%)	1%	1%	3%	3%	2%	2%	
, ,	672	37	20	733	588	230	
Adj. Flow (vph) Shared Lane Traffic (%)	072	31	20	733	300	230	
Lane Group Flow (vph)	709	0	0	753	818	0	
Enter Blocked Intersection	No	No	No	No	No	No	
	Left		Left	Left	Left		
Lane Alignment	20	Right	Len			Right	
Median Width(ft)				0	0		
Link Offset(ft)	0			0			
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane	1 00	1.00	101	1.04	1.04	1.00	
Headway Factor	1.09	1.09	1.04	1.04	1.04	1.09	
Turning Speed (mph)	15	9	15	0	0	9	
Number of Detectors	1		1	2	2 Th::::		
Detector Template	Left		Left	Thru	Thru		
Leading Detector (ft)	20		20	100	100		
Trailing Detector (ft)	0		0	0	0		
Detector 1 Position(ft)	0		0	0	0		
Detector 1 Size(ft)	20		20	6	6		
Detector 1 Type	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex		
Detector 1 Channel							
Detector 1 Extend (s)	0.0		0.0	0.0	0.0		
Detector 1 Queue (s)	0.0		0.0	0.0	0.0		
Detector 1 Delay (s)	0.0		0.0	0.0	0.0		
Detector 2 Position(ft)				94	94		
Detector 2 Size(ft)				6	6		
Detector 2 Type				Cl+Ex	Cl+Ex		
Detector 2 Channel							
Detector 2 Extend (s)				0.0	0.0		

Synchro 8 Report Page 26 PM Peak Hour

√_{ø2 (R)}

∠ ø6 (R)

	_#	7	•	×	×	✓		
Lane Group	EBL	EBR	NEL	NET	SWT	SWR	ø4	
Turn Type	NA		pm+pt	NA	NA			
Protected Phases	3		5	2	6		4	
Permitted Phases			2					
Detector Phase	3		5	2	6			
Switch Phase								
Minimum Initial (s)	4.0		4.0	4.0	4.0		4.0	
Minimum Split (s)	20.0		10.0	21.5	21.5		20.0	
Total Split (s)	62.0		20.0	65.0	45.0		23.0	
Total Split (%)	41.3%		13.3%	43.3%	30.0%		15%	
Maximum Green (s)	58.0		14.0	59.0	39.0		19.0	
Yellow Time (s)	3.5		4.0	4.0	4.0		3.5	
All-Red Time (s)	0.5		2.0	2.0	2.0		0.5	
Lost Time Adjust (s)	0.0			0.0	0.0			
Total Lost Time (s)	4.0			6.0	6.0			
Lead/Lag	Lead		Lead		Lag		Lag	
Lead-Lag Optimize?	Yes		Yes		Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0		3.0	
Recall Mode	None		None	C-Max	C-Max		None	
Walk Time (s)	5.0						5.0	
Flash Dont Walk (s)	11.0						11.0	
Pedestrian Calls (#/hr)	0						0	
Act Effct Green (s)	39.4			100.6	100.6			
Actuated g/C Ratio	0.26			0.67	0.67			
v/c Ratio	0.83			0.36	0.37			
Control Delay	60.9			12.0	8.5			
Queue Delay	0.0			0.0	0.0			
Total Delay	60.9			12.0	8.5			
LOS	Е			В	Α			
Approach Delay	60.9			12.0	8.5			
Approach LOS	Е			В	Α			
Intersection Summary								
Area Type:	Other							
Cycle Length: 150								
Actuated Cycle Length: 15								
Offset: 55 (37%), Reference	ced to phase	2:NETL	and 6:SV	VT, Start o	of Green			
Natural Cycle: 80								
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.83								
Intersection Signal Delay:					ntersection			
Intersection Capacity Utiliz	ation 58.2%			10	CU Level	of Service	В	
Analysis Period (min) 15								
Splits and Phases: 33: N	N Decatur Rd	& Have	and Dr					
Opino and mases. 33.1	v Decatul 110	a i iayy	ולם שלים					

	۶	→	•	•	—	•	•	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	13	11	9	128	18	114	9	594	395	98	184	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	15	12	12	12	12	12	11	12	12	11	12
Storage Length (ft)	0		0	0		0	0		0	20		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.963			0.941			0.947			0.997	
Flt Protected		0.980			0.976						0.983	
Satd. Flow (prot)	0	1972	0	0	1728	0	0	1722	0	0	1800	0
Flt Permitted		0.849			0.824			0.996			0.496	
Satd. Flow (perm)	0	1709	0	0	1459	0	0	1715	0	0	908	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		11			40			47			2	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		487			1319			1719			1513	
Travel Time (s)		11.1			30.0			39.1			34.4	
Peak Hour Factor	0.82	0.82	0.82	0.92	0.92	0.92	0.82	0.82	0.82	0.86	0.86	0.86
Heavy Vehicles (%)	0%	0%	0%	1%	1%	1%	1%	1%	1%	0%	0%	0%
Adj. Flow (vph)	16	13	11	139	20	124	11	724	482	114	214	8
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	40	0	0	283	0	0	1217	0	0	336	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0	, ,		0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	0.88	1.00	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.04	1.00
Turning Speed (mph)	16		10	16		10	16		10	16		10
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4		2	8		2	2		2	6	
		•						_				

Synchro 8 Report Page 28 PM Peak Hour

	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	10.0	10.0		10.0	10.0		10.5	10.5		10.5	10.5	
Total Split (s)	45.0	45.0		45.0	45.0		65.0	65.0		65.0	65.0	
Total Split (%)	40.9%	40.9%		40.9%	40.9%		59.1%	59.1%		59.1%	59.1%	
Maximum Green (s)	39.5	39.5		39.5	39.5		59.5	59.5		59.5	59.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.5			5.5			5.5			5.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Act Effct Green (s)		20.6			20.6			59.8			59.8	
Actuated g/C Ratio		0.23			0.23			0.65			0.65	
v/c Ratio		0.10			0.79			1.07			0.57	
Control Delay		21.4			44.1			66.5			15.0	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		21.4			44.1			66.5			15.0	
LOS		С			D			Е			В	
Approach Delay		21.4			44.1			66.5			15.0	
Approach LOS		С			D			Е			В	

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 91.5

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.07 Intersection Signal Delay: 53.0 Intersection Capacity Utilization 106.5%

Intersection LOS: D
ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 37: Houston Mill Rd & Mason Mill Road

	-	\rightarrow	•	•	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		7	★	<u> </u>	7
Volume (vph)	735	126	177	516	130	593
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	1300	12	11	8
Storage Length (ft)	12	0	300	12	200	0
Storage Lanes		0	1		1	1
Taper Length (ft)		U	25		25	!
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	0.99
Frt	0.982		1.00		1.00	0.850
FIt Protected	0.902		0.950		0.950	0.000
	1000	0		1001		1400
Satd. Flow (prot)	1823	0	1847	1881	1745	1400
Flt Permitted	1000		0.118	1001	0.950	1000
Satd. Flow (perm)	1823	0	229	1881	1742	1382
Right Turn on Red	-	Yes				Yes
Satd. Flow (RTOR)	7					538
Link Speed (mph)	35			35	30	
Link Distance (ft)	1440			922	1382	
Travel Time (s)	28.1			18.0	31.4	
Confl. Peds. (#/hr)		4	4		1	1
Peak Hour Factor	0.88	1.00	0.87	0.87	0.89	0.89
Heavy Vehicles (%)	2%	2%	1%	1%	0%	0%
Adj. Flow (vph)	835	126	203	593	146	666
Shared Lane Traffic (%)						
Lane Group Flow (vph)	961	0	203	593	146	666
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	13			13	11	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	10			10	10	
Headway Factor	1.00	1.00	0.96	1.00	1.04	1.20
Turning Speed (mph)	1.00	9	15	1.00	1.04	9
Number of Detectors	2	9	15	2	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (ft)	100		20	100	20	20
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		20	6	20	20
Detector 1 Type	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	Cl+Ex			Cl+Ex		
Detector 2 Channel	J L A			- · · · · · ·		
Detector 2 Extend (s)	0.0			0.0		
DOLOGIO & EVIGUR (9)	0.0			0.0		

Synchro 8 Report Page 30 PM Peak Hour

	→	*	•	•	7		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Turn Type	NA		pm+pt	NA	NA	Free	
Protected Phases	6		5	2	8		
Permitted Phases			2			Free	
Detector Phase	6		5	2	8		
Switch Phase							
Minimum Initial (s)	4.0		4.0	4.0	4.0		
Minimum Split (s)	10.0		10.0	10.0	10.0		
Total Split (s)	81.0		19.0	100.0	50.0		
Total Split (%)	54.0%		12.7%	66.7%	33.3%		
Maximum Green (s)	75.0		13.0	94.0	44.0		
Yellow Time (s)	4.0		4.0	4.0	4.0		
All-Red Time (s)	2.0		2.0	2.0	2.0		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.0		6.0	6.0	6.0		
Lead/Lag	Lag		Lead				
Lead-Lag Optimize?	Yes		Yes				
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Recall Mode	C-Max		None	C-Max	None		
Act Effct Green (s)	95.1		120.0	120.0	18.0	150.0	
Actuated g/C Ratio	0.63		0.80	0.80	0.12	1.00	
v/c Ratio	0.83		0.53	0.39	0.70	0.48	
Control Delay	35.1		21.8	6.6	80.3	1.2	
Queue Delay	0.0		0.0	0.0	0.0	0.0	
Total Delay	35.1		21.8	6.6	80.3	1.2	
LOS	D		С	Α	F	Α	
Approach Delay	35.1			10.5	15.4		
Approach LOS	D			В	В		

Area Type: Other

Cycle Length: 150 Actuated Cycle Length: 150

Offset: 85 (57%), Referenced to phase 2:WBTL and 6:EBT, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83
Intersection Signal Delay: 21.2
Intersection Capacity Utilization 78.4%

Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 42: Houston Mill Rd & Lavista Rd

	۶	-	\rightarrow	•	←	•	•	†	~	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			सीक			414	
Volume (vph)	16	24	78	59	35	50	237	802	79	13	522	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	13	12	12	12	12	12	12	12
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.99			1.00			1.00			1.00	
Frt		0.911			0.953			0.989			0.998	
Flt Protected		0.993			0.980			0.990			0.999	
Satd. Flow (prot)	0	1662	0	0	1815	0	0	3425	0	0	3564	0
Flt Permitted		0.923			0.668			0.674			0.898	
Satd. Flow (perm)	0	1544	0	0	1234	0	0	2332	0	0	3203	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		65			17			18			3	
Link Speed (mph)		30			30			35			35	
Link Distance (ft)		348			341			1743			1189	
Travel Time (s)		7.9			7.8			34.0			23.2	
Confl. Peds. (#/hr)			5	5					12	12		
Peak Hour Factor	0.91	0.91	0.91	0.86	0.86	0.86	0.78	0.78	0.78	0.86	0.86	0.86
Heavy Vehicles (%)	2%	2%	2%	1%	1%	1%	3%	3%	3%	1%	1%	1%
Adj. Flow (vph)	18	26	86	69	41	58	304	1028	101	15	607	9
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	130	0	0	168	0	0	1433	0	0	631	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	0.96	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		

Synchro 8 Report Page 32 PM Peak Hour

	•	-	\rightarrow	•	←	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		21.5	21.5		21.5	21.5	
Total Split (s)	26.0	26.0		26.0	26.0		104.0	104.0		104.0	104.0	
Total Split (%)	20.0%	20.0%		20.0%	20.0%		80.0%	80.0%		80.0%	80.0%	
Maximum Green (s)	21.0	21.0		21.0	21.0		99.0	99.0		99.0	99.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Act Effct Green (s)		18.8			18.8			101.2			101.2	
Actuated g/C Ratio		0.14			0.14			0.78			0.78	
v/c Ratio		0.47			0.88			0.79			0.25	
Control Delay		31.2			87.5			20.3			4.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		31.2			87.5			20.3			4.4	
LOS		С			F			С			Α	
Approach Delay		31.2			87.5			20.3			4.4	
Approach LOS		С			F			С			Α	

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 80 (62%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88

Intersection Signal Delay: 21.4 Intersection LOS: C
Intersection Capacity Utilization 74.0% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 47: Clifton Rd & Old Briarcliff Rd/Towers Cir

	٠	→	•	•	←	•	4	†	/	\	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥		7		4			4			4	7
Volume (vph)	297	0	36	0	0	52	0	257	0	19	10	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	8	12	10	12	12	12	12	16	12	12	12	11
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.865							0.850
Flt Protected	0.950										0.968	
Satd. Flow (prot)	1564	0	1507	0	1644	0	0	2153	0	0	1839	1561
Flt Permitted	0.950										0.968	
Satd. Flow (perm)	1564	0	1507	0	1644	0	0	2153	0	0	1839	1561
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		289			282			193			351	
Travel Time (s)		6.6			6.4			4.4			8.0	
Peak Hour Factor	0.83	0.83	0.83	0.59	0.59	0.59	0.84	0.84	0.84	0.88	0.88	0.88
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	358	0	43	0	0	88	0	306	0	22	11	7
Shared Lane Traffic (%)												
Lane Group Flow (vph)	358	0	43	0	88	0	0	306	0	0	33	7
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		8			8			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.20	1.00	1.09	1.00	1.00	1.00	1.00	0.85	1.00	1.00	1.00	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
1.1	47 40/			10	SILL I .							

Intersection Capacity Utilization 47.1%

Analysis Period (min) 15

ICU Level of Service A

	≠	→	←	٧	6	✓
Lane Group	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations		414	ħβ		W	
Volume (vph)	5	899	843	13	5	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	1.00
Ped Bike Factor						
Frt			0.998		0.897	
Flt Protected					0.988	
Satd. Flow (prot)	0	3505	3532	0	1651	0
Flt Permitted					0.988	
Satd. Flow (perm)	0	3505	3532	0	1651	0
Link Speed (mph)		35	35		30	
Link Distance (ft)		147	531		214	
Travel Time (s)		2.9	10.3		4.9	
Confl. Peds. (#/hr)				13		
Peak Hour Factor	0.93	0.93	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	3%	3%	2%	2%	2%	2%
Adj. Flow (vph)	5	967	916	14	5	16
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	972	930	0	21	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	10	Ĭ	12	, and the second
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15			9	15	9
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 38.3%			IC	CU Level o	of Service

Analysis Period (min) 15

	۶	→	•	•	←	•	4	†	/	>	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† †	7	ኻ	^	7	ሻሻ	↑ ↑		ሻሻ	∱ }	
Volume (vph)	63	1118	405	90	606	174	578	880	160	422	690	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		300	300		400	300		0	150		0
Storage Lanes	1		1	1		1	2		0	2		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.97	0.95	0.95	0.97	0.95	0.95
Frt			0.850			0.850		0.977			0.990	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1787	3574	1599	1770	3539	1583	3467	3492	0	3467	3539	0
Flt Permitted	0.336			0.073			0.950			0.950		
Satd. Flow (perm)	632	3574	1599	136	3539	1583	3467	3492	0	3467	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			328			187		14			4	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		2251			1808			2219			2954	
Travel Time (s)		43.9			35.2			43.2			57.5	
Peak Hour Factor	0.98	0.98	0.98	0.93	0.93	0.93	0.91	0.91	0.91	0.93	0.93	0.93
Heavy Vehicles (%)	1%	1%	1%	2%	2%	2%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	64	1141	413	97	652	187	635	967	176	454	742	51
Shared Lane Traffic (%)												
Lane Group Flow (vph)	64	1141	413	97	652	187	635	1143	0	454	793	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			24			24	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	3	8		7	4	. 5	1	6		5	2	
Permitted Phases	8		8	4		4					_	
				'		'						

Synchro 8 Report Page 36 PM Peak Hour

	•	-	•	•	•	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	3	8	8	7	4	4	1	6		5	2	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	8.0	20.0	20.0	8.0	20.0	20.0	10.0	20.0		10.0	20.0	
Total Split (s)	37.0	58.0	58.0	27.0	48.0	48.0	22.0	50.0		15.0	43.0	
Total Split (%)	24.7%	38.7%	38.7%	18.0%	32.0%	32.0%	14.7%	33.3%		10.0%	28.7%	
Maximum Green (s)	33.0	52.0	52.0	23.0	42.0	42.0	16.0	44.0		9.0	37.0	
Yellow Time (s)	3.5	4.0	4.0	3.5	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	0.5	2.0	2.0	0.5	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	6.0	6.0	4.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	C-Max							
Act Effct Green (s)	67.4	57.2	57.2	74.6	62.8	62.8	22.1	44.0		15.1	37.0	
Actuated g/C Ratio	0.45	0.38	0.38	0.50	0.42	0.42	0.15	0.29		0.10	0.25	
v/c Ratio	0.18	0.84	0.51	0.50	0.44	0.24	1.24	1.11		1.30	0.91	
Control Delay	7.1	35.8	17.4	30.0	32.0	4.0	162.5	108.5		180.0	87.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	7.1	35.8	17.4	30.0	32.0	4.0	162.5	108.5		180.0	87.3	
LOS	Α	D	В	С	С	Α	F	F		F	F	
Approach Delay		30.0			26.2			127.8			121.0	
Approach LOS		С			С			F			F	

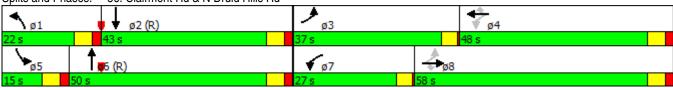
Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 13 (9%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 100


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.30 Intersection Signal Delay: 80.9

Intersection Signal Delay: 80.9 Intersection LOS: F
Intersection Capacity Utilization 95.7% ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 56: Clairmont Rd & N Druid Hills Rd

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f.		7	f.		ሻ	↑ ↑		ሻ	∱ ∱	
Volume (vph)	228	529	15	157	319	72	19	797	44	214	1117	197
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	150		0	150		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.996			0.972			0.992			0.978	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1787	1874	0	1787	1829	0	1787	3546	0	1787	3496	0
Flt Permitted	0.252			0.113			0.075			0.136		
Satd. Flow (perm)	474	1874	0	213	1829	0	141	3546	0	256	3496	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			8			4			15	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		2445			1250			2954			1012	
Travel Time (s)		47.6			24.4			57.5			19.7	
Peak Hour Factor	0.97	0.97	0.97	0.90	0.90	0.90	0.94	0.94	0.94	0.92	0.92	0.92
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	235	545	15	174	354	80	20	848	47	233	1214	214
Shared Lane Traffic (%)												
Lane Group Flow (vph)	235	560	0	174	434	0	20	895	0	233	1428	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	J		12	· ·		24	· ·		24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		1	6		5	2	
Permitted Phases	4			8			6			2		
Minimum Split (s)	8.0	20.0		8.0	20.0		8.0	20.0		8.0	20.0	
Total Split (s)	18.0	57.0		18.0	57.0		18.0	57.0		18.0	57.0	
Total Split (%)	12.0%	38.0%		12.0%	38.0%		12.0%	38.0%		12.0%	38.0%	
Maximum Green (s)	14.0	53.0		14.0	53.0		14.0	53.0		14.0	53.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5		0.5	0.5		0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Act Effct Green (s)	67.0	53.0		67.0	53.0		67.0	53.0		67.0	53.0	
Actuated g/C Ratio	0.45	0.35		0.45	0.35		0.45	0.35		0.45	0.35	
v/c Ratio	0.70	0.85		0.72	0.67		0.09	0.71		0.91	1.15	
Control Delay	54.1	47.6		43.9	46.2		44.2	77.7		64.9	119.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	54.1	47.6		43.9	46.2		44.2	77.7		64.9	119.3	
- Clai Bolay	J-1.1	17.0		٠٠.٥	10.2		17. ८	, , , ,		5 ¬.0		

Synchro 8 Report Page 38 PM Peak Hour

	۶	→	•	•	←	•	4	†	/	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS	D	D		D	D		D	Е		Е	F	
Approach Delay		49.5			45.6			76.9			111.7	
Approach LOS		D			D			Е			F	
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 150)											
Offset: 2 (1%), Referenced	to phase 2:5	SBTL and	l 6:NBTL,	Start of 0	Green							
Natural Cycle: 90												
Control Type: Pretimed												
Maximum v/c Ratio: 1.15												
Intersection Signal Delay: 8	1.2			In	tersectior	LOS: F						
Intersection Capacity Utiliza	ation 91.3%			IC	U Level o	of Service	F					
Analysis Period (min) 15												

Splits and Phases: 57: Clairmont Rd & Lavista Rd

↑ ø1	ø2 (R)	√ ø3	♣ ₀₄
18 s	57 s	18 s	57 s
ø5	ø6 (R)	≯ _{ø7}	₩ ø8
18 s	57 s	18 s	57 s

	۶	\rightarrow	4	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		ኘ	^	†	JJII
Volume (vph)	306	189	163	1393	1109	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	200	1000	1000	0
Storage Lanes	1	0	1			0
Taper Length (ft)	25	U	25			U
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	0.95
Frt	0.948	1.00	1.00	0.83	0.988	0.33
Flt Protected	0.940		0.950		0.300	
Satd. Flow (prot)	1730	0	1787	3574	3531	0
Flt Permitted	0.970	U	0.071	00/4	0001	U
	1730	0	134	3574	3531	0
Satd. Flow (perm)	1730		134	35/4	3331	
Right Turn on Red	00	Yes			0	Yes
Satd. Flow (RTOR)	23			0.5	8	
Link Speed (mph)	30			35	35	
Link Distance (ft)	2023			816	2219	
Travel Time (s)	46.0			15.9	43.2	
Peak Hour Factor	0.88	0.88	0.94	0.94	0.92	0.92
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	348	215	173	1482	1205	109
Shared Lane Traffic (%)						
Lane Group Flow (vph)	563	0	173	1482	1314	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	•		24	24	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15	1.00	1.00	9
Number of Detectors	1	9	13	2	2	9
Detector Template	Left		Left	Thru	Thru	
•			20	100	100	
Leading Detector (ft)	20					
Trailing Detector (ft)	0		0	0	0	
Detector 1 Position(ft)	0		0	0	0	
Detector 1 Size(ft)	20		20	6	6	
Detector 1 Type	Cl+Ex		Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(ft)				94	94	
Detector 2 Size(ft)				6	6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	NA		pm+pt	NA	NA	
Protected Phases	4		5 pili+pt	2	6	
	4			۷	U	
Permitted Phases			2			

Synchro 8 Report Page 40 PM Peak Hour

	•	•	1	1	↓	4		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		
Detector Phase	4		5	2	6			
Switch Phase								
Minimum Initial (s)	4.0		4.0	4.0	4.0			
Minimum Split (s)	20.0		9.0	20.0	20.0			
Total Split (s)	57.0		27.0	93.0	66.0			
Total Split (%)	38.0%		18.0%	62.0%	44.0%			
Maximum Green (s)	52.0		22.0	88.0	61.0			
Yellow Time (s)	4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0		5.0	5.0	5.0			
Lead/Lag			Lead		Lag			
Lead-Lag Optimize?			Yes		Yes			
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Recall Mode	None		None	C-Max	C-Max			
Act Effct Green (s)	49.9		90.1	90.1	70.2			
Actuated g/C Ratio	0.33		0.60	0.60	0.47			
v/c Ratio	0.95		0.71	0.69	0.79			
Control Delay	73.9		48.1	18.5	28.2			
Queue Delay	6.6		0.0	0.2	0.2			
Total Delay	80.5		48.1	18.7	28.4			
LOS	F		D	В	С			
Approach Delay	80.5			21.7	28.4			
Approach LOS	F			С	С			
Intersection Summary								
Area Type:	Other							
Cycle Length: 150								
Actuated Cycle Length: 15								
Offset: 57 (38%), Referen	ced to phase	2:NBTL a	and 6:SB	T, Start o	f Green			
Natural Cycle: 70								
Control Type: Actuated-Co	oordinated							
Maximum v/c Ratio: 0.95								
Intersection Signal Delay:	33.6			lr	ntersection	LOS: C		

Splits and Phases: 61: Clairmont Rd & Mason Mill Rd

Intersection Capacity Utilization 83.9%

Analysis Period (min) 15

ICU Level of Service E

Synchro 8 Report PM Peak Hour

	۶	\rightarrow	•	•	•	•		†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	ĵ.			4		ň	† †	7	ř	∱ }	
Volume (vph)	294	0	130	4	0	9	19	1117	3	8	1149	57
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		0	0		0	200		200	100		0
Storage Lanes	1		0	0		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.850			0.905				0.850		0.993	
Flt Protected 0).950				0.985		0.950			0.950		
	1805	1615	0	0	1694	0	1787	3574	1599	1787	3549	0
\(\(\frac{1}{2}\)).744				0.929		0.086			0.166		
	1414	1615	0	0	1597	0	162	3574	1599	312	3549	0
Right Turn on Red			Yes			Yes			Yes	•		Yes
Satd. Flow (RTOR)		96			80				22		4	
Link Speed (mph)		30			30			35			35	
Link Distance (ft)		776			344			1210			816	
Travel Time (s)		17.6			7.8			23.6			15.9	
` ,	0.70	0.70	0.70	0.65	0.65	0.65	0.89	0.89	0.89	0.90	0.90	0.90
Heavy Vehicles (%)	0%	0.70	0.70	0.03	0.03	0.03	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	420	0 /0	186	6	0 /0	14	21	1255	3	9	1277	63
Shared Lane Traffic (%)	420	U	100	U	U	14	21	1233	J	3	1211	03
Lane Group Flow (vph)	420	186	0	0	20	0	21	1255	3	9	1340	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left		Left	Left	Right	Left	Left	
Median Width(ft)	Leit	12	nigiii	Leit	12	Right	Leit	12	nigiii	Leit	12	Right
Link Offset(ft)		0			0			0			0	
` '		16			16			16			16	
Crosswalk Width(ft) Two way Left Turn Lane		10			10			10			10	
	1.00	1.00	1.00	1.00	1 00	1.00	1 00	1.00	1.00	1.00	1.00	1 00
	1.00	1.00	9	1.00	1.00	9	1.00 15	1.00	1.00	1.00	1.00	1.00 9
Turning Speed (mph)		2	9		0	9		_	1	15	2	9
Number of Detectors	1			1	2 Than		1	2 Than				
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	
	l+Ex	Cl+Ex		Cl+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type F	Perm	NA		Perm	NA		pm+pt	NA	Perm	Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2		2	6		

	•	-	•	•	•	•	1	†		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	6	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0		20.0	20.0		11.0	20.0	20.0	20.0	20.0	
Total Split (s)	66.0	66.0		66.0	66.0		12.0	84.0	84.0	72.0	72.0	
Total Split (%)	44.0%	44.0%		44.0%	44.0%		8.0%	56.0%	56.0%	48.0%	48.0%	
Maximum Green (s)	60.0	60.0		60.0	60.0		5.0	77.0	77.0	65.0	65.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		5.0	5.0	5.0	5.0	5.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		7.0	7.0	7.0	7.0	7.0	
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	50.5	50.5			50.5		86.5	86.5	86.5	78.7	78.7	
Actuated g/C Ratio	0.34	0.34			0.34		0.58	0.58	0.58	0.52	0.52	
v/c Ratio	0.88	0.31			0.03		0.13	0.61	0.00	0.06	0.72	
Control Delay	67.0	17.0			0.1		21.7	31.9	3.3	10.4	19.3	
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.7	
Total Delay	67.0	17.0			0.1		21.7	31.9	3.3	10.4	20.0	
LOS	Е	В			Α		С	С	Α	В	В	
Approach Delay		51.6			0.1			31.7			19.9	
Approach LOS		D			Α			С			В	

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 89 (59%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88

Intersection Signal Delay: 30.3 Intersection LOS: C Intersection Capacity Utilization 67.4% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 62: Clairmont Rd & Southern Ln/Driveway

Synchro 8 Report PM Peak Hour

Queue Delay

Total Delay

65: Claiirmont Rd/C		ni Ru d	x vele	ians A	ınans N	neu O	en/Oia	IIIIOIIL	LN		0	/4/2013
	•	→	•	✓	•	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	**		7	ሻ	₽		ሻ	∱ ∱		ሻ	ተኈ	
Volume (vph)	133	2	274	30	0	22	26	968	28	51	1221	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		150	100		0	250		0	250		0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850		0.850			0.996			0.999	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1583	0	1787	3560	0	1787	3571	0
Flt Permitted	0.740			0.756			0.161			0.218		
Satd. Flow (perm)	1378	1863	1583	1408	1583	0	303	3560	0	410	3571	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			151		200			4			1	
Link Speed (mph)		30			30			35			35	
Link Distance (ft)		648			575			1977			1210	
Travel Time (s)		14.7			13.1			38.5			23.6	
Peak Hour Factor	0.59	0.59	0.59	0.81	0.81	0.81	0.91	0.91	0.91	0.94	0.94	0.94
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	225	3	464	37	0	27	29	1064	31	54	1299	11
Shared Lane Traffic (%)							_		-			
Lane Group Flow (vph)	225	3	464	37	27	0	29	1095	0	54	1310	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	9		12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								-			-	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm	Perm	NA		pm+pt	NA	Ū	pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4	•	4	8			2	_		6	J	
Minimum Split (s)	19.0	19.0	19.0	19.0	19.0		10.0	20.0		10.0	20.0	
Total Split (s)	29.0	29.0	29.0	29.0	29.0		13.0	108.0		13.0	108.0	
Total Split (%)	19.3%	19.3%	19.3%	19.3%	19.3%		8.7%	72.0%		8.7%	72.0%	
Maximum Green (s)	23.0	23.0	23.0	23.0	23.0		7.0	102.0		7.0	102.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	0.0	0.0	0.0	0.0	0.0		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Act Effct Green (s)	23.0	23.0	23.0	23.0	23.0		109.0	102.0		109.0	102.0	
Actuated g/C Ratio	0.15	0.15	0.15	0.15	0.15		0.73	0.68		0.73	0.68	
v/c Ratio	1.07	0.01	1.25	0.17	0.07		0.10	0.45		0.15	0.54	
Control Delay	139.0	54.0	168.1	57.7	0.3		2.3	12.5		9.3	32.2	

Synchro 8 Report PM Peak Hour Page 44

0.0

0.3

0.0

57.7

0.0

168.1

0.0

54.0

0.0

139.0

0.0

2.3

0.0

12.5

0.0

32.2

0.0

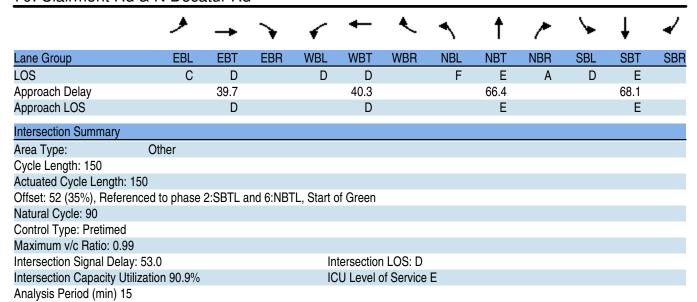
9.3

65: Claiirmont Rd/Clairmont Rd & Veterans Affairs Med Cen/Clairmont Lk

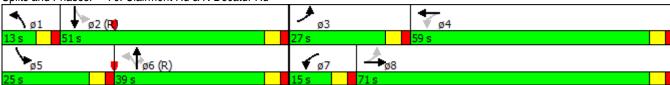
6/4/2013

	•	→	\rightarrow	•	←	•		†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS	F	D	F	Е	Α		Α	В		Α	С	
Approach Delay		158.1			33.5			12.2			31.3	
Approach LOS		F			С			В			С	
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 1	50											
Offset: 5 (3%), Reference	ed to phase 6:	SBTL, Sta	art of Gre	en								
Natural Cycle: 60												
Control Type: Pretimed												

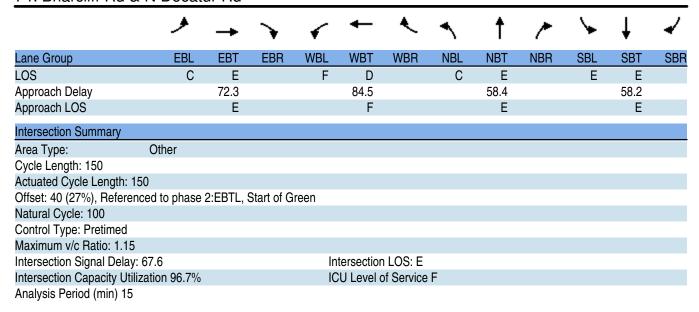
Natural Cycle: 60 Control Type: Pretimed Maximum v/c Ratio: 1.25 Intersection Signal Delay: 51.8

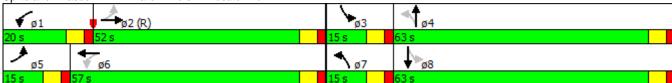

Intersection Signal Delay: 51.8 Intersection LOS: D
Intersection Capacity Utilization 69.4% ICU Level of Service C

Analysis Period (min) 15


Splits and Phases: 65: Claiirmont Rd/Clairmont Rd & Veterans Affairs Med Cen/Clairmont Lk

	ᄼ	-	•	•	←	•	•	†	~	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	∱ 1≽		¥	∱ }		ħ	^	7	¥	† }	
Volume (vph)	245	835	245	157	495	52	134	609	61	139	740	158
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	300		0	150		300	200		0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.966			0.986				0.850		0.974	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1787	3453	0	1787	3524	0	1770	3539	1583	1770	3447	0
Flt Permitted	0.291			0.144			0.119			0.140		
Satd. Flow (perm)	547	3453	0	271	3524	0	222	3539	1583	261	3447	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		32			8				178		17	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		2078			1739			966			539	
Travel Time (s)		40.5			33.9			18.8			10.5	
Peak Hour Factor	0.97	0.97	0.97	0.95	0.95	0.95	0.98	0.98	0.98	0.94	0.94	0.94
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	253	861	253	165	521	55	137	621	62	148	787	168
Shared Lane Traffic (%)												
Lane Group Flow (vph)	253	1114	0	165	576	0	137	621	62	148	955	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4			6		6	2		
Minimum Split (s)	9.5	21.5		9.5	21.5		9.5	21.5	21.5	9.5	21.5	
Total Split (s)	27.0	71.0		15.0	59.0		13.0	39.0	39.0	25.0	51.0	
Total Split (%)	18.0%	47.3%		10.0%	39.3%		8.7%	26.0%	26.0%	16.7%	34.0%	
Maximum Green (s)	21.5	65.5		9.5	53.5		7.5	33.5	33.5	19.5	45.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5		5.5	5.5		5.5	5.5	5.5	5.5	5.5	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	
Act Effct Green (s)	80.5	65.5		63.0	53.5		41.0	33.5	33.5	58.5	45.5	
Actuated g/C Ratio	0.54	0.44		0.42	0.36		0.27	0.22	0.22	0.39	0.30	
v/c Ratio	0.54	0.73		0.79	0.46		0.99	0.79	0.13	0.50	0.90	
Control Delay	30.6	41.7		48.4	38.0		111.7	63.0	0.5	47.0	71.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	30.6	41.7		48.4	38.0		111.7	63.0	0.5	47.0	71.4	





-	•	-	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	f)		ሻ	ĥ		ሻ	f.	
Volume (vph)	36	441	62	226	248	81	58	450	139	92	562	23
Ideal Flow (vphpl) 1	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		0	300		0	150		0	150		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.981			0.963			0.965			0.994	
Flt Protected 0.	.950			0.950			0.950			0.950		
Satd. Flow (prot) 1	1787	1845	0	1787	1812	0	1752	1780	0	1787	1870	0
Flt Permitted 0.	.380			0.078			0.105			0.107		
Satd. Flow (perm)	715	1845	0	147	1812	0	194	1780	0	201	1870	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		5			12			12			2	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		942			3025			1172			2474	
Travel Time (s)		18.4			58.9			22.8			48.2	
Peak Hour Factor	0.94	0.94	0.94	0.91	0.91	0.91	0.95	0.95	0.95	0.94	0.94	0.94
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	3%	3%	3%	1%	1%	1%
Adj. Flow (vph)	38	469	66	248	273	89	61	474	146	98	598	24
Shared Lane Traffic (%)												
Lane Group Flow (vph)	38	535	0	248	362	0	61	620	0	98	622	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type pn	n+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2			6			4			8		
Minimum Split (s)	10.0	22.0		10.0	22.0		10.0	22.0		10.0	22.0	
Total Split (s)	15.0	52.0		20.0	57.0		15.0	63.0		15.0	63.0	
Total Split (%)	0.0%	34.7%		13.3%	38.0%		10.0%	42.0%		10.0%	42.0%	
Maximum Green (s)	9.0	46.0		14.0	51.0		9.0	57.0		9.0	57.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag L	_ead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Act Effct Green (s)	55.0	46.0		65.0	51.0		66.0	57.0		66.0	57.0	
Actuated g/C Ratio	0.37	0.31		0.43	0.34		0.44	0.38		0.44	0.38	
v/c Ratio	0.12	0.94		1.15	0.58		0.34	0.91		0.54	0.87	
Control Delay	25.4	75.6		144.1	43.7		26.6	61.6		59.2	58.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	25.4	75.6		144.1	43.7		26.6	61.6		59.2	58.0	

Synchro 8 Report Page 48 PM Peak Hour

Splits and Phases: 74: Briarcliff Rd & N Decatur Rd

PROJECT: CDC Roybal Campus EIS
LOCATION: Briarcliff Road @ N Decatur Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TURNING MOVEMENT COUNT SUMMARY

TIME	VEHICLE	"1" AT	Br	iarcliff Ro	oad	Bri	arcliff Ro	oad	De	ecatur Ro	ad	De	ecatur Ro	ad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	START OF PEAK	L	(NB)	R	L	(SB)	R	L	(EB)	R	L	(WB)	R	VOLUME	VOLUME	HOURLY VOLUME
7:15 AM	Auto	HALLE	12	142	55	8	62	8	3	61	11	45	66	15	501		
to	Truck		0	4	1	1	4	0	0	0	0	3	0	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		0	115	42	21	71	7	22	75	9	34	76	21	509		
to	Truck		0	6	2	0	1	0	0	1	0	3	3	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	5	133	39	13	84	6	8	74	16	51	63	25	530		
to	Truck		0	3	3	0	0	0	0	2	0	5	0	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		6	104	30	20	98	7	21	89	18	57	82	15	565		
to	Truck		1	4	6	0	3	0	0	2	0	1	1	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,105	
8:15 AM	Auto		15	102	34	24	108	10	18	79	20	48	79	31	587		
to	Truck		1	5	3	1	1	0	0	0	0	5	3	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,191	
8:30 AM	Auto		11	102	42	7	101	12	13	56	11	42	114	17	547		
to	Truck		0	8	4	0	2	0	0	3	0	2	0	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,229	
8:45 AM	Auto		8	100	40	17	112	4	16	76	11	39	102	23	561		
to	Truck		0	5	3	0	1	0	0	0	0	4	0	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,260	
9:00 AM	Auto		5	119	60	17	99	11	6	54	4	46	76	29	538		
to	Truck		0	3	0	0	2	0	0	2	1	3	1	0			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,233	
	our Volume		39	461	161	65	397	35	60	305	65	211	342	88	2,229		
PHV	(by appro	ach)		661			497			430			641				
Peak H	lour Factor	(PHF)		0.90			0.86			0.83			0.92]		
1	Total Autos	3		623			490			423			624				
Т	otal Trucks	s		38			7			7			17				
Т	Total Buses	;		0			0			0			0				
	% Auto			94.3%			98.6%			98.4%			97.3%		1		
% H	leavy Vehic	eles		5.7%			1.4%			1.6%			2.7%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Briarcliff Road @ Clifton Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TURNING MOVEMENT COUNT SUMMARY

TIME	VEHICLE	"1" AT START	Bri	iarcliff Ro	oad	Bri	iarcliff Ro	oad	С	lifton Ro	ad	C	lifton Ro	ad	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		0	124	56	220	109	0	0	0	0	35	0	76	637		
to	Truck		0	4	3	4	3	0	0	0	0	0	0	3			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		0	147	82	224	114	0	0	0	0	42	0	98	731		
to	Truck		0	6	7	6	1	0	0	0	0	0	0	4			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	0	164	85	216	123	0	0	0	0	70	0	99	776		
to	Truck		0	3	1	5	4	0	0	0	0	0	0	6			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		0	141	91	210	158	0	0	0	0	69	0	106	801		
to	Truck		0	5	3	3	4	0	0	0	0	4	0	7			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,945	
8:15 AM	Auto		0	167	78	205	137	0	0	0	0	60	0	87	755		
to	Truck		0	3	3	5	5	0	0	0	0	2	0	3			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,063	
8:30 AM	Auto		0	151	80	199	179	0	0	0	0	66	0	82	782		
to	Truck		0	3	3	5	8	0	0	0	0	2	0	4			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,114	
8:45 AM	Auto		0	143	80	176	198	0	0	0	0	68	0	54	744		
to	Truck		0	3	3	7	6	0	0	0	0	1	0	5			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,082	
9:00 AM	Auto		0	140	67	164	179	0	0	0	0	53	0	83	707		
to	Truck		0	2	2	2	5	0	0	0	0	2	0	8		0.000	
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0	-	2,988	
	our Volume	` ,	0	637	344	848	618	0	0	0	0	273	0	394	3,114		
	(by appro			981			1,466			0			667				
Peak H	lour Factor	(PHF)		0.97			0.94			#DIV/0!			0.90				
Т	Total Autos			957			1,427			0			639				
T	otal Trucks	5		24			39			0			28				
Т	otal Buses	;		0			0			0			0				
	% Auto			97.6%			97.3%			#DIV/0!			95.8%				
% H	leavy Vehic	eles		2.4%			2.7%			#DIV/0!			4.2%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Briarcliff Road @ LaVista Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Bri	iarcliff Ro	oad	Bri	iarcliff Ro	oad	La	Vista Ro	ad	La	Vista Ro	ad	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	T	R	L	T	R	L	т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		22	115	17	5	185	10	7	30	40	42	84	7	585		
to	Truck		2	5	1	1	5	0	0	3	2	0	0	2			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		19	151	26	1	120	3	15	45	73	57	114	13	655		
to	Truck		2	4	2	1	5	0	0	1	1	1	1	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	22	172	28	3	146	9	12	33	54	48	111	13	668		
to	Truck		1	6	2	0	4	1	0	1	1	0	1	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		19	141	17	5	148	7	13	46	44	44	127	21	651		
to	Truck		2	7	0	0	7	0	0	0	0	1	2	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,559	
8:15 AM	Auto		22	165	22	3	128	5	10	44	60	45	122	15	672		
to	Truck		2	6	1	1	8	1	0	2	4	1	5	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,646	
8:30 AM	Auto		22	142	18	3	133	2	19	56	45	54	113	15	646		
to	Truck		1	2	2	0	9	1	1	0	5	0	2	1			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,637	
8:45 AM	Auto		16	131	21	5	183	9	23	55	32	60	106	12	674		
to	Truck		1	4	4	0	4	0	0	1	1	1	5	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,643	
9:00 AM	Auto		16	133	25	7	164	5	13	38	47	50	129	11	662		
to	Truck		1	8	1	2	6	0	0	2	1	1	1	1			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,654	
Peak Ho	our Volume	e (PHV)	91	641	90	15	583	26	55	182	213	193	483	65	2,637		
PHV	(by appro	ach)		822			624			450			741				
Peak H	lour Factor	(PHF)		0.89			0.93			0.89			0.95				
Т	Total Autos	1		790			592			436			728				
Т	otal Trucks	s		32			32			14			13				
т	otal Buses			0			0			0			0				
	% Auto			96.1%			94.9%			96.9%			98.2%				
% Н	leavy Vehic	eles		3.9%			5.1%			3.1%			1.8%				
	icks & Bus			0.070			0.170			0.170			1.070				

LOCATION: North Druid Hills Road @ LaVista Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	N Di	ruid Hill F (NB)	Road	N Di	uid Hill F	Road	La	Vista Ro	ad	La	Vista Ro	ad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		75	310	3	14	176	28	23	35	19	9	138	18	865		
to	Truck		1	5	0	1	2	2	0	1	1	0	3	1			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		124	360	4	15	176	54	26	35	51	14	150	29	1,067		
to	Truck		0	12	0	0	9	0	2	1	0	1	4	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	110	385	5	21	195	68	25	56	52	12	174	25	1,148		
to	Truck		1	4	1	1	8	0	0	1	2	0	1	1			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		107	351	4	15	183	48	33	53	54	28	166	20	1,082		
to	Truck		4	4	0	0	5	0	0	0	1	0	3	3			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		4,162	
8:15 AM	Auto		116	336	2	18	177	32	30	72	54	20	168	28	1,070		
to	Truck		2	5	0	1	2	2	0	0	1	1	2	1			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		4,367	
8:30 AM	Auto		117	356	7	25	158	44	28	50	59	21	185	21	1,095		
to	Truck		0	6	0	1	8	1	3	1	1	0	3	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		4,395	
8:45 AM	Auto		122	325	7	17	137	44	26	50	57	24	117	26	973		
to	Truck		4	11	0	0	1	0	0	1	1	0	3	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		4,220	
9:00 AM	Auto		94	231	9	18	144	28	32	54	44	20	133	27	867		
to	Truck		1	14	1	1	5	0	1	3	5	0	1	1			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		4,005	
Peak Ho	our Volum	e (PHV)	457	1,447	19	82	736	195	119	233	224	82	702	99	4,395		
PHV	(by appro	ach)		1,923			1,013			576			883				
Peak H	lour Factor	(PHF)		0.95			0.86			0.92			0.96				
1	Total Autos	3		1,896			984			566			868				
Т	otal Truck	s		27			29			10			15				
Т	otal Buses	5		0			0			0			0				
	% Auto			98.6%			97.1%			98.3%			98.3%		1		
% H	leavy Vehic	cles		1.4%			2.9%			1.7%			1.7%				
(Tru	ıcks & Bus	ses)															

LOCATION: Clairmont Road @ Mason Mill Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Cla	irmont R	oad	Cla	irmont R (SB)	oad	Mas	on Mill F	Road	Mas	on Mill F	Road	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		11	226	0	0	359	59	10	0	23	0	0	0	694		
to	Truck		0	3	0	0	3	0	0	0	0	0	0	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		17	236	0	0	407	65	14	0	19	0	0	0	770		
to	Truck		0	4	0	0	5	2	0	0	1	0	0	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	46	253	0	0	430	61	18	0	19	0	0	0	841		
to	Truck		0	5	0	0	7	1	1	0	0	0	0	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		36	296	0	0	414	85	16	0	17	0	0	0	874		
to	Truck		0	3	0	0	6	1	0	0	0	0	0	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,179	
8:15 AM	Auto		41	332	0	0	386	81	21	0	21	0	0	0	894		
to	Truck		0	7	0	0	5	0	0	0	0	0	0	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,379	
8:30 AM	Auto		36	283	0	0	336	61	25	0	28	0	0	0	785		
to	Truck		0	10	0	0	4	1	1	0	0	0	0	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,394	
8:45 AM	Auto		28	273	0	0	362	87	12	0	23	0	0	0	796		
to	Truck		0	4	0	0	3	2	0	0	2	0	0	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,349	
9:00 AM	Auto		30	233	0	0	293	58	22	0	18	0	0	0	665		
to	Truck		0	5	0	0	6	0	0	0	0	0	0	0		0.440	
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0	-	3,140	
	our Volume	` ,	159	1,189	0	0	1,588	291	82	0	85	0	0	0	3,394	j	
	(by appro	•		1,348			1,879			167			0				
	lour Factor	` '		0.89			0.93			0.77			#DIV/0!				
Т	Total Autos	3		1,323			1,854			165			0				
T	otal Trucks	s		25			25			2			0				
т	otal Buses	s		0			0			0			0				
	% Auto			98.1%			98.7%			98.8%			#DIV/0!				
% H	leavy Vehic	eles		1.9%			1.3%			1.2%			#DIV/0!				
(Tru	ıcks & Bus	es)															

PROJECT: **CDC Roybal Campus EIS** LOCATION:

Houston Mill Road @ Mason Mill Road

TIME PERIOD: ΑM WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Hous	ston Mill (NB)	Road	Hous	ston Mill (SB)	Road	Mas	on Mill F (EB)	Road	Mas	on Mill F (WB)	Road	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		0	24	15	6	149	1	2	4	2	73	0	14	295		
to	Truck		0	0	1	1	2	0	0	0	0	1	0	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		0	28	15	12	114	1	4	4	4	71	0	25	282		
to	Truck		0	1	0	0	1	0	0	0	0	2	0	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	1	34	27	6	120	0	9	3	3	77	0	22	305		
to	Truck		0	1	1	0	0	0	0	0	0	0	1	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		0	45	21	5	98	0	4	2	4	75	1	14	269		
to	Truck		0	0	0	0	0	0	0	0	0	0	0	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,151	
8:15 AM	Auto		0	35	17	3	100	0	5	2	4	80	2	18	267		
to	Truck		0	1	0	0	0	0	0	0	0	0	0	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,123	
8:30 AM	Auto		1	23	10	7	95	0	3	8	2	92	1	15	257		
to	Truck		0	0	0	0	0	0	0	0	0	0	0	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,098	
8:45 AM	Auto		0	28	20	5	111	0	3	4	7	75	0	18	274		
to	Truck		0	0	1	0	1	0	1	0	0	0	0	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,067	
9:00 AM	Auto		2	29	15	4	97	0	2	2	1	92	4	9	257		
to	Truck		0	0	0	0	0	0	0	0	0	0	0	0			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,055	
Peak H	our Volum	e (PHV)	2	139	76	21	413	0	21	15	13	324	5	69	1,098		
PHV	(by appro	ach)		217			434			49			398]		
Peak H	lour Factor	(PHF)		0.82			0.86			0.82			0.92				
7	Total Autos	•		214			434			49			397				
Т	otal Truck	s		3			0			0			1				
1	Total Buses	,		0			0			0			0				
	% Auto			98.6%			100.0%			100.0%			99.7%		1		
% H	leavy Vehic	eles		1.4%			0.0%			0.0%			0.3%				
(Tru	ucks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Clairmont Road @ N Decatur Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Cla	irmont R	oad	Cla	irmont R (SB)	oad	North	Decatur (EB)	Road	North	Decatur	Road	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		73	197	5	21	62	43	45	54	19	24	219	10	791		
to	Truck		2	2	0	1	1	1	0	5	1	0	6	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		69	229	1	15	132	57	52	104	37	22	246	3	987		
to	Truck		4	1	0	0	1	1	0	6	2	0	5	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	70	231	7	18	143	61	56	122	39	17	236	2	1,029		
to	Truck		4	1	0	0	2	5	0	10	4	1	0	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		44	213	5	22	124	53	51	134	27	18	231	3	956		
to	Truck		2	2	0	2	1	2	0	11	4	0	6	1			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,763	
8:15 AM	Auto		69	260	6	26	116	102	52	97	26	19	216	4	1,016		
to	Truck		1	3	0	2	0	3	1	6	3	1	3	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,988	
8:30 AM	Auto		65	201	8	28	124	84	39	60	28	13	233	5	907		
to	Truck		3	4	0	0	2	1	0	5	1	0	3	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,908	
8:45 AM	Auto		59	176	5	41	124	108	35	57	28	11	213	6	889		
to	Truck		2	4	0	1	0	2	1	2	6	0	8	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0	705	3,768	
9:00 AM	Auto		56	133	3	34	100	85	22	52	22	16	246	6	795		
to	Truck		1	5	0	2	2	1	0	4	0	0	5	0		0.007	
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,607	
	our Volume	` ,	258	915	26	98	512	311	199	445	132	69	928	15	3,908		
	(by appro	•		1,199			921			776			1,012				
	lour Factor	` '		0.88			0.92			0.84			0.98				
	Total Autos			1,179			901			731			997				
Т	otal Trucks	s		20			20			45			15				
T	Total Buses	3		0			0			0			0				
	% Auto			98.3%			97.8%			94.2%			98.5%				
% H	leavy Vehic	eles		1.7%			2.2%			5.8%			1.5%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Haygood Drive @ N Decatur Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Ha	ygood Di (NB)	rive	Ha	ygood Di (SB)	rive	N E	ecatur R	oad	N	Decatur R (WB)	oad	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		0	0	0	96	0	13	23	130	0	0	213	138	639		
to	Truck		0	0	0	7	0	1	1	7	0	0	4	6			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		0	0	0	42	0	4	9	70	0	0	251	155	548		
to	Truck		0	0	0	0	0	0	0	7	0	0	8	2			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	0	0	0	39	0	2	3	84	0	0	263	175	578		
to	Truck		0	0	0	0	0	0	0	6	0	0	6	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		0	0	0	29	0	5	4	77	0	0	238	159	530		
to	Truck		0	0	0	0	0	0	0	8	0	0	8	2			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,295	
8:15 AM	Auto		0	0	0	34	0	8	4	78	0	0	251	155	543		
to	Truck		0	0	0	1	0	0	0	2	0	0	5	5			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,199	
8:30 AM	Auto		0	0	0	35	0	4	3	78	0	0	223	135	503		
to	Truck		0	0	0	2	0	0	1	5	0	0	12	5			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,154	
8:45 AM	Auto		0	0	0	32	0	3	4	86	0	0	211	90	443		
to	Truck		0	0	0	2	0	0	0	3	0	0	11	1			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,019	
9:00 AM	Auto		0	0	0	37	0	5	6	77	0	0	168	68	376		
to 9:15 AM	Truck Bus		0	0	0	2	0	0	1 0	4 0	0	0	5 0	3 0		1,865	
													 			1,865	
	our Volume		0	0	0	140	0	19	15	338	0	0	1,006	636	2,154	J	
	(by appro			0			159			353			1,642				
Peak H	lour Factor	(PHF)		#DIV/0!			0.92			0.95			0.92				
T	Total Autos	3		0			156			331			1,599				
T	otal Truck	s		0			3			22			43				
Т	Total Buses	•		0			0			0			0				
	% Auto			#DIV/0!			98.1%			93.8%			97.4%		1		
% H	leavy Vehic	eles		#DIV/0!			1.9%			6.2%			2.6%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Clifton Road @ N Decatur Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	С	lifton Roa	ad	C	lifton Ro	ad	N D	ecatur R	oad	NE	ecatur R	oad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		0	93	6	10	11	37	86	60	0	0	72	51	441		
to	Truck		0	0	0	4	1	4	1	0	0	0	1	4			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		1	93	11	34	24	33	91	80	0	0	92	63	545		
to	Truck		0	0	0	3	0	8	3	1	0	0	2	6			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	0	136	16	31	19	43	99	90	0	0	70	68	589		
to	Truck		0	1	0	3	2	3	3	2	0	0	2	1			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		3	157	14	30	15	34	83	67	1	0	114	89	621		
to	Truck		0	0	0	4	0	2	2	4	0	0	0	2			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,196	
8:15 AM	Auto		5	148	9	16	20	30	99	67	1	0	112	86	619		
to	Truck		0	2	0	3	0	4	4	3	0	0	4	6			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,374	
8:30 AM	Auto		3	127	8	25	17	26	82	66	3	0	142	79	597		
to	Truck		0	0	0	3	0	5	3	2	0	0	1	5			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,426	
8:45 AM	Auto		6	118	6	13	13	27	103	58	2	0	133	86	586		
to	Truck		0	2	0	6	0	2	2	2	0	0	4	3			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,423	
9:00 AM	Auto		4	73	5	28	11	26	91	62	3	0	122	84	524		
to	Truck		0	5	1	2	0	3	2	0	0	0	1	1			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,326	
Peak Ho	our Volum	e (PHV)	11	571	47	115	73	147	375	301	5	0	445	336	2,426		
PHV	(by appro	ach)		629			335			681			781				
Peak H	lour Factor	(PHF)		0.90			0.83			0.88			0.86				
1	Total Autos	3		626			306			658			760				
Т	otal Truck	s		3			29			23			21				
Т	Total Buses	5		0			0			0			0				
	% Auto			99.5%			91.3%			96.6%			97.3%		1		
% H	leavy Vehic	cles		0.5%			8.7%			3.4%			2.7%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Clifton Road @ Haygood Drive

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	С	lifton Roa (NB)	ad	C	lifton Ro	ad	As	bury Cir (EB)	cle	На	ygood D (WB)	rive	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		3	149	4	22	88	25	14	3	2	3	9	111	455		
to	Truck		0	4	1	0	10	0	2	1	3	1	0	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		8	187	2	32	137	18	15	2	6	8	6	100	552		
to	Truck		0	6	1	4	13	1	1	0	2	2	0	1			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	6	195	3	31	110	27	13	4	4	3	10	94	536		
to	Truck		0	9	3	5	11	1	0	0	4	1	0	2			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		6	252	5	27	105	24	20	4	5	5	7	80	568		
to	Truck		0	10	2	0	7	0	1	0	3	1	0	4			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,111	
8:15 AM	Auto		4	225	1	23	117	26	25	3	5	3	16	112	586		
to	Truck		0	8	3	1	6	2	0	0	4	0	0	2			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,242	
8:30 AM	Auto		5	201	1	20	116	26	12	6	9	5	19	119	566		
to	Truck		0	7	2	0	9	1	3	1	4	0	0	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,256	
8:45 AM	Auto		4	209	4	15	93	22	31	6	4	1	17	127	556		
to	Truck		0	10	1	0	8	0	1	0	3	0	0	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,276	
9:00 AM	Auto		8	179	4	14	110	24	16	2	3	6	17	99	515		
to	Truck		1	11	2	1	9	1	2	1	1	0	0	4			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,223	
Peak Ho	our Volume	e (PHV)	21	907	20	107	481	107	74	18	38	18	52	413	2,256		
PHV	(by appro	ach)		948			695			130			483				
Peak H	lour Factor	(PHF)		0.86			0.94			0.88			0.84				
Т	Total Autos	3		904			652			110			473		1		
T	otal Trucks	s		44			43			20			10				
т	otal Buses	;		0			0			0			0				
	% Auto			95.4%			93.8%			84.6%			97.9%		1		
% H	leavy Vehic	eles		4.6%			6.2%			15.4%			2.1%				
	ıcks & Bus						0.2,5			/ 0							

LOCATION: Clairmont Road @ N Druid Hills Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Cla	irmont R	oad	Cla	irmont R (SB)	oad	N Di	ruid Hill F	Road	N Di	ruid Hill I (WB)	Road	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	٦	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		90	142	11	23	223	4	3	86	101	65	306	106	1,178		
to	Truck		2	3	0	2	2	0	1	3	0	3	2	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		101	149	11	28	216	1	3	93	102	85	406	92	1,315		
to	Truck		1	3	0	1	4	0	0	5	0	1	11	2			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	104	167	16	25	218	4	2	98	108	100	411	124	1,404		
to	Truck		0	3	1	1	2	0	0	8	0	4	7	1			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		101	189	22	38	221	1	5	116	103	103	364	97	1,381		
to	Truck		1	1	1	1	2	0	1	4	0	2	7	1			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		5,278	
8:15 AM	Auto		98	203	13	44	223	3	7	89	107	91	359	97	1,353		
to	Truck		2	3	2	0	2	0	0	3	0	0	6	1			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		5,453	
8:30 AM	Auto		88	179	12	26	199	10	5	109	112	65	395	84	1,309		
to	Truck		3	5	0	1	4	0	0	4	0	1	5	2			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		5,447	
8:45 AM	Auto		108	198	20	34	198	7	5	92	105	93	362	104	1,351		
to	Truck		2	5	0	0	2	0	0	6	0	0	9	1			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		5,394	
9:00 AM	Auto		96	150	25	39	179	11	6	93	1	59	257	76	1,023		
to	Truck		4	2	1	2	2	0	0	5	0	1	13	1			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		5,036	
Peak Ho	our Volum	e (PHV)	397	750	67	136	871	18	20	431	430	366	1,554	407	5,447		
PHV	(by appro	ach)		1,214			1,025			881			2,327				
Peak H	lour Factor	(PHF)		0.95			0.94			0.96			0.90				
1	Total Autos	3		1,192			1,012			861			2,290				
Т	otal Truck	s		22			13			20			37				
Т	otal Buses	5		0			0			0			0				
	% Auto			98.2%			98.7%			97.7%			98.4%		1		
% H	leavy Vehic	cles		1.8%			1.3%			2.3%			1.6%				
(Tru	ıcks & Bus	ses)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Clairmont Road @ LaVista Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Cla	irmont R	oad	Cla	irmont R (SB)	oad	La	Vista Ro	ad	La	Vista Ro	ad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	т	R	L	т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		6	262	1	9	202	68	24	29	0	52	109	33	807		
to	Truck		0	2	0	0	3	1	1	1	0	3	0	1			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		10	254	0	23	219	68	31	30	3	56	106	27	846		
to	Truck		0	5	0	1	5	0	1	1	0	2	4	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	9	242	2	28	194	65	32	42	0	74	158	16	876		
to	Truck		0	5	0	2	1	1	0	2	0	1	2	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		10	279	0	18	208	63	24	42	3	41	148	17	872		
to	Truck		0	3	0	0	4	2	0	1	0	1	7	1			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,401	
8:15 AM	Auto		13	313	0	24	188	90	25	53	3	54	133	18	920		
to	Truck		0	0	1	1	2	1	0	0	0	0	1	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,514	
8:30 AM	Auto		10	292	2	20	181	55	35	37	5	62	119	24	854		
to	Truck		0	3	0	0	5	1	0	0	0	0	3	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,522	
8:45 AM	Auto		12	272	3	12	158	55	39	49	3	50	100	22	785		
to	Truck		0	4	0	0	2	1	0	2	0	0	1	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,431	
9:00 AM	Auto		9	210	5	27	187	57	27	42	4	46	99	30	757		
to	Truck		0	0	0	1	4	0	2	3	1	0	3	0			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,316	
	our Volume		42	1,137	5	93	783	278	116	177	11	233	571	76	3,522	<u> </u>	
	(by appro			1,184			1,154			304			880				
Peak H	lour Factor	(PHF)		0.91			0.94			0.94			0.88				
1	Total Autos	•		1,172			1,134			301			864				
Т	otal Trucks	5		12			20			3			16				
Т	otal Buses	;		0			0			0			0				
	% Auto			99.0%			98.3%			99.0%			98.2%		1		
% H	leavy Vehic	eles		1.0%			1.7%			1.0%			1.8%				
(Tru	ıcks & Bus	es)]		

PROJECT: CDC Roybal Campus EIS
LOCATION: Houston Mill Road @ Clifton Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Hous	ston Mill (NB)	Road	Hous	ton Mill (SB)	Road	С	lifton Roa (EB)	ad	С	lifton Roa (WB)	ad	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		3	1	1	41	81	25	23	79	44	59	127	14	517		
to	Truck		0	0	2	0	0	1	0	9	1	3	3	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		1	2	5	53	84	29	14	120	76	89	139	20	660		
to	Truck		1	0	3	3	1	0	1	10	0	3	5	1			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	5	3	3	48	85	42	32	108	110	87	150	36	735		
to	Truck		0	0	3	0	0	0	0	15	0	2	5	1			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		6	9	5	39	84	39	28	97	85	111	148	36	710		
to	Truck		0	0	2	0	0	1	0	7	0	2	11	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,622	
8:15 AM	Auto		6	4	6	43	74	40	29	120	60	125	165	18	707		
to	Truck		0	0	3	0	0	0	0	5	1	2	6	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,812	
8:30 AM	Auto		5	4	9	36	91	35	24	88	80	118	165	15	685		
to	Truck		0	0	3	0	0	0	0	8	0	2	2	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,837	
8:45 AM	Auto		3	8	5	28	110	24	18	92	87	121	133	28	678		
to	Truck		0	0	2	0	0	1	0	5	0	2	11	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,780	
9:00 AM	Auto		2	6	4	31	100	35	27	116	63	116	140	22	690		
to	Truck		0	0	2	0	1	1	0	9	2	2	10	1		0.700	
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0	-	2,760	
	our Volume	` ′	22	20	34	166	334	157	113	448	336	449	652	106	2,837		
	(by appro			76			657			897			1,207				
	lour Factor	` '		0.86			0.94			0.85			0.95				
	Total Autos			65			656			861			1,174				
T	otal Trucks	•		11			1			36			33				
Т	otal Buses	•		0			0			0			0]		
	% Auto			85.5%			99.8%			96.0%			97.3%				
% H	leavy Vehic	les		14.5%			0.2%			4.0%			2.7%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Houston Mill Road @ LaVista Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Hous	ston Mill (NB)	Road	Hous	ton Mill (SB)	Road	La	Vista Ro (EB)	ad	La	Vista Ro (WB)	ad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		15	0	24	0	0	0	0	52	26	130	146	0	401		
to	Truck		0	0	0	0	0	0	0	2	1	2	3	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		16	0	30	0	0	0	0	82	30	122	217	0	507		
to	Truck		1	0	0	0	0	0	0	3	0	2	4	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	22	0	43	0	0	0	0	86	16	137	198	0	507		
to	Truck		1	0	0	0	0	0	0	2	0	0	2	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		26	0	41	0	0	0	0	75	19	144	208	0	518		
to	Truck		0	0	1	0	0	0	0	0	0	1	3	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,933	
8:15 AM	Auto		17	0	44	0	0	0	0	87	12	119	215	0	502		
to	Truck		1	0	0	0	0	0	0	1	0	1	5	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,034	
8:30 AM	Auto		13	0	31	0	0	0	0	90	15	112	228	0	494		
to	Truck		0	0	0	0	0	0	0	2	0	0	3	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,021	
8:45 AM	Auto		21	0	32	0	0	0	0	88	16	100	190	0	456		
to	Truck		0	0	0	0	0	0	0	3	0	1	5	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0	450	1,970	
9:00 AM	Auto		12	0	32	0	0	0	0	98	17	102	178	0	452		
to	Truck		0	0	2	0	0	0	0	8	0	0	3	0		1 004	
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,904	
	our Volume	` ′	80	0	160	0	0	0	0	343	62	514	862	0	2,021		
	(by appro			240			0			405			1,376				
	lour Factor	` '		0.88			#DIV/0!			0.95			0.97				
	Total Autos			237			0			400			1,361				
Т	otal Trucks	s		3			0			5			15				
T	otal Buses	3		0			0			0			0				
	% Auto			98.8%			#DIV/0!			98.8%			98.9%				
% H	leavy Vehic	les		1.3%			#DIV/0!			1.2%			1.1%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Briarcliff Road @ Shephards Lane

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT	Bri	iarcliff Ro	oad	Bri	iarcliff Ro	ad	Sh	epards L (EB)	ane	Sh	epards L (WB)	ane	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	START OF PEAK	L	T	R	L	т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	HOURLY VOLUME
7:15 AM	Auto		53	137	0	0	258	4	2	0	65	0	0	0	530		
to	Truck		0	4	0	0	6	0	0	0	1	0	0	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		81	161	0	0	252	6	0	0	49	0	0	0	565		
to	Truck		1	10	0	0	5	0	0	0	0	0	0	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	71	183	0	0	282	2	1	0	34	0	0	0	591		
to	Truck		0	9	0	0	9	0	0	0	0	0	0	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		69	169	0	0	278	3	7	0	56	0	0	0	601		
to	Truck		3	10	0	0	6	0	0	0	0	0	0	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,287	
8:15 AM	Auto		62	194	0	0	268	1	1	0	50	0	0	0	592		
to	Truck		0	6	0	0	10	0	0	0	0	0	0	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,349	
8:30 AM	Auto		54	184	0	0	280	1	5	0	61	0	0	0	607		
to	Truck		0	6	0	0	14	1	0	0	1	0	0	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,391	
8:45 AM	Auto		35	165	0	0	289	4	1	0	62	0	0	0	575		
to	Truck		0	9	0	0	10	0	0	0	0	0	0	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,375	
9:00 AM	Auto		50	177	0	0	278	5	5	0	53	0	0	0	588		
to	Truck		3	9	0	0	6	0	0	0	2	0	0	0			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,362	
Peak Ho	our Volume	e (PHV)	259	761	0	0	1,147	8	14	0	202	0	0	0	2,391]	
PHV	(by appro	ach)		1,020			1,155			216			0				
Peak H	our Factor	(PHF)		0.97			0.98			0.81			#DIV/0!				
Т	Total Autos	;		986			1,115			215			0				
T	otal Trucks	s		34			40			1			0				
Т	otal Buses	;		0			0			0			0				
	% Auto			96.7%			96.5%			99.5%			#DIV/0!		1		
% H	eavy Vehic	eles		3.3%			3.5%			0.5%			#DIV/0!				
	icks & Bus																

LOCATION: Briarcliff Road @ Johnson-Zonolite Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Br	iarcliff Ro	oad	Bri	iarcliff Ro	oad	Johns	on-Zono (EB)	lite Rd	Johns	on-Zono	lite Rd	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	T	R	L	T	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		7	100	2	4	73	44	69	4	4	1	3	3	328		
to	Truck		1	3	0	1	1	1	3	0	4	0	0	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		7	122	3	5	72	58	95	9	2	5	6	4	401		
to	Truck		0	6	0	0	0	2	3	0	2	0	0	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	5	131	4	12	96	76	109	11	3	2	4	3	468		
to	Truck		2	1	0	1	1	2	3	0	2	0	0	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		5	115	6	11	122	80	110	9	3	7	5	0	488		
to	Truck		0	5	0	1	3	3	2	0	0	1	0	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,685	
8:15 AM	Auto		4	123	1	11	108	77	104	11	0	6	4	4	466		
to	Truck		0	3	0	1	3	2	3	0	0	1	0	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,823	
8:30 AM	Auto		8	98	6	15	119	99	110	9	2	2	5	4	491		
to	Truck		0	4	0	0	5	3	2	0	0	0	0	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,913	
8:45 AM	Auto		12	107	2	13	126	120	115	11	0	0	4	4	529		
to	Truck		0	3	0	1	3	3	2	0	2	0	1	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,974	
9:00 AM	Auto		19	108	6	9	112	102	79	8	6	5	6	5	476		
to	Truck		0	2	0	0	4	2	3	0	0	0	0	0			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,962	
Peak Ho	our Volume	e (PHV)	24	480	17	52	457	342	443	40	10	19	18	11	1,913		
PHV	(by appro	ach)		521			851			493			48				
Peak H	lour Factor	(PHF)		0.91			0.88			0.96			0.80				
7	Total Autos	;		506			826			481			46				
Т	otal Truck	s		15			25			12			2				
1	Total Buses	•		0			0			0			0				
	% Auto			97.1%			97.1%			97.6%			95.8%		1		
% H	leavy Vehic	eles		2.9%			2.9%			2.4%			4.2%				
(Tru	ıcks & Bus	es)															

LOCATION: Houston Mill Road @ CDC Entrance

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT	Hous	ston Mill (NB)	Road	Hous	ston Mill (SB)	Road	CE	C Entrai	псе		0 (WB)		15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	START OF PEAK	L	T	R	L	(3B)	R	L	T	R	L	T	R	VOLUME	VOLUME	HOURLY VOLUME
7:15 AM	Auto		4	1	4	64	0	69	0	0	1	0	0	0	147		
to	Truck		0	2	0	0	2	0	0	0	0	0	0	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		4	2	1	84	0	72	5	0	2	0	0	0	174		
to	Truck		0	3	0	0	1	0	0	0	0	0	0	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	2	4	1	108	2	74	2	0	2	0	0	0	199		
to	Truck		0	4	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		5	13	0	80	4	95	1	0	0	0	0	0	200		
to	Truck		0	2	0	0	0	0	0	0	0	0	0	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		720	
8:15 AM	Auto		1	6	1	62	6	80	4	0	0	0	0	0	162		
to	Truck		0	1	0	0	1	0	0	0	0	0	0	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		735	
8:30 AM	Auto		7	11	3	72	4	96	6	0	1	0	0	0	201		
to	Truck		0	1	0	0	0	0	0	0	0	0	0	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		762	
8:45 AM	Auto		12	16	12	70	7	88	2	0	1	0	0	0	211		
to	Truck		0	2	0	0	1	0	0	0	0	0	0	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		774	
9:00 AM	Auto		8	6	3	65	4	94	3	0	0	0	0	0	186		
to	Truck		0	2	0	0	1	0	0	0	0	0	0	0			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		760	
Peak H	our Volum	e (PHV)	15	42	5	322	17	345	13	0	3	0	0	0	762]	
PHV	(by appro	ach)		62			684			16			0				
Peak H	Hour Factor	r (PHF)		0.70			0.93			0.57			#DIV/0!				
•	Total Autos	3		54			683			16			0				
1	Total Truck	s		8			1			0			0				
•	Total Buses	s		0			0			0			0				
	% Auto			87.1%			99.9%			100.0%			#DIV/0!				
% F	leavy Vehic	cles		12.9%			0.1%			0.0%			#DIV/0!				
(Tri	ucks & Bus	ses)													I		

PROJECT: CDC Roybal Campus EIS
LOCATION: CDC Entrance @ Clifton Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	CL	C Entrai	псе	CE	C Entrai	псе	С	lifton Ro	ad	С	lifton Ro	ad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	т	R	L	Т	R	L	т	R	L	т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		12	0	5	0	0	0	4	191	133	42	88	1	484		
to	Truck		0	0	0	0	0	0	0	6	0	0	2	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		9	0	15	0	0	1	2	244	108	38	122	1	553		
to	Truck		0	0	0	0	0	0	0	10	0	0	3	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	16	0	5	0	0	1	7	242	93	47	128	1	561		
to	Truck		0	0	0	1	0	0	0	13	0	0	7	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		15	0	10	2	0	2	7	220	139	50	107	0	569		
to	Truck		0	0	0	0	0	0	1	3	1	0	12	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,167	
8:15 AM	Auto		15	0	8	0	0	3	5	228	141	67	118	0	600		
to	Truck		0	0	0	0	0	0	1	8	0	0	5	1			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,283	
8:30 AM	Auto		21	0	0	0	0	0	0	185	107	60	108	1	492		
to	Truck		0	0	0	0	0	0	2	5	1	0	2	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,222	
8:45 AM	Auto		12	0	9	0	0	4	4	211	134	43	98	0	535		
to	Truck		2	0	0	0	0	1	0	9	0	1	7	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,196	
9:00 AM	Auto		16	0	13	0	0	2	8	230	124	42	112	2	575		
to	Truck		1	0	0	0	0	1	1	11	0	0	12	0			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,202	
	our Volume		67	0	23	3	0	6	23	904	482	224	487	3	2,222		
	(by appro			90			9			1,409			714				
Peak H	lour Factor	(PHF)		0.90			0.56			0.92			0.93				
1	Total Autos	;		90			8			1,374			687				
Т	otal Trucks	s		0			1			35			27				
т	Total Buses	s		0			0			0			0				
	% Auto			100.0%			88.9%			97.5%			96.2%				
% H	leavy Vehic	eles		0.0%			11.1%			2.5%			3.8%				
(Tru	ıcks & Bus	es)															

LOCATION: Emory Conference Center @ Clifton Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Em	ory Cont (NB)	Ctr	Em	ory Cont (SB)	Ctr	С	lifton Roa (EB)	ad	С	lifton Ro	ad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		0	0	0	4	0	5	22	178	0	0	161	23	406		
to	Truck		0	0	0	0	0	0	0	8	0	0	3	2			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		0	0	0	10	0	5	30	187	0	0	133	23	407		
to	Truck		0	0	0	1	0	1	1	11	0	0	3	2			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	0	0	0	4	0	2	17	225	0	0	173	26	463		
to	Truck		0	0	0	0	0	0	0	8	0	0	6	2			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		0	0	0	4	0	2	18	216	0	0	170	29	456		
to	Truck		0	0	0	3	0	0	0	5	0	0	8	1			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,732	
8:15 AM	Auto		0	0	0	8	0	2	23	203	0	0	170	30	450		
to	Truck		0	0	0	1	0	0	1	5	0	0	5	2			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,776	
8:30 AM	Auto		0	0	0	7	0	4	22	172	0	0	166	34	420		
to	Truck		0	0	0	3	0	0	0	5	0	0	5	2			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,789	
8:45 AM	Auto		0	0	0	7	0	4	17	169	0	0	153	29	399		
to	Truck		0	0	0	1	0	0	0	10	0	0	8	1			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0	404	1,725	
9:00 AM	Auto		0	0	0	9	0	6	20	197	0	0	140	31	424		
to	Truck		0	0	0	2	0	0	1	8	0	0	9	1		1.000	
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,693	
	our Volume	` ,	0	0	0	30	0	10	81	839	0	0	703	126	1,789		
	(by appro			0			40			920			829				
Peak H	lour Factor	(PHF)		#DIV/0!			0.71			0.92			1.00				
Т	Total Autos	3		0			33			896			798				
T	otal Truck	s		0			7			24			31				
т	Total Buses	,		0			0			0			0				
	% Auto			#DIV/0!			82.5%			97.4%			96.3%				
% H	leavy Vehic	eles		#DIV/0!			17.5%			2.6%			3.7%				
(Tru	ucks & Bus	es)															

LOCATION: Emory Conference Center (Hotel) @ Clifton Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	Emory	Conf Ctr (NB)	(Hotel)	Emory	Conf Ctr (SB)	(Hotel)	С	lifton Ro	ad	С	lifton Ro	ad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		0	0	0	1	0	1	11	189	0	0	144	5	363		
to	Truck		0	0	0	0	0	0	0	8	0	0	4	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		0	0	0	0	0	2	11	231	0	0	137	1	398		
to	Truck		0	0	0	1	0	0	0	12	0	0	3	0			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	0	0	0	1	0	2	11	225	0	0	163	3	417		
to	Truck		0	0	0	0	0	0	0	7	0	0	5	0			
8:00 AM 8:00 AM	Bus			0	0	0	0	0	0	0 255	0	0	0 175	0 4	458	-	
to to	Auto Truck		0	0	0	2	0	1	6 0	255 4	0	0	1/5	0	458		
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,636	
8:15 AM	Auto		0	0	0	1	0	3	5	202	0	0	161	6	389	1,030	
to	Truck		0	0	0	0	0	1	0	6	0	0	4	0	303		
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,662	
8:30 AM	Auto		0	0	0	2	0	2	2	192	0	0	184	5	398	1,002	
to	Truck		0	0	0	0	0	0	0	7	0	0	4	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,662	
8:45 AM	Auto		0	0	0	1	0	5	8	189	0	0	160	2	386		
to	Truck		0	0	0	0	0	0	0	12	0	0	9	0			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,631	
9:00 AM	Auto		0	0	0	4	0	2	8	221	0	0	128	0	380		
to	Truck		0	0	0	0	0	1	1	9	0	0	5	1			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,553	
Peak Ho	our Volum	e (PHV)	0	0	0	6	0	9	24	898	0	0	707	18	1,662		
PHV	(by appro	ach)		0			15			922			725				
Peak H	lour Factor	r (PHF)		#DIV/0!			0.75			0.87			0.94				
1	Total Autos	3		0			14			898			701				
т	otal Truck	s		0			1			24			24				
т	Total Buses	s		0			0			0			0				
	% Auto			#DIV/0!			93.3%			97.4%			96.7%				
% H	leavy Vehic	cles		#DIV/0!			6.7%			2.6%			3.3%				
(Tru	ıcks & Bus	ses)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Clifton Road @ Briarcliff Way

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	С	lifton Roa	ad	С	lifton Roa (SB)	ad	Old	Briarcliff (EB)	Way	Old	Briarclift (WB)	f Way	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		2	82	12	13	250	1	1	20	58	4	4	1	462		
to	Truck		0	1	1	0	11	0	0	0	1	0	0	0			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		1	96	11	16	304	0	0	12	63	11	3	4	537		
to	Truck		0	2	2	1	7	0	0	0	1	2	0	1			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	6	114	16	9	290	4	2	12	64	13	3	3	552		
to	Truck		0	5	2	0	6	0	0	0	0	3	0	0			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		7	106	11	21	298	4	4	21	77	6	2	5	577		
to	Truck		0	5	2	1	5	0	0	1	0	1	0	0			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,128	
8:15 AM	Auto		3	102	18	17	300	4	5	10	56	2	2	3	537		
to	Truck		1	3	1	0	6	0	0	0	0	1	0	3			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,203	
8:30 AM	Auto		8	88	29	18	242	2	0	19	56	5	5	2	485		
to	Truck		1	4	0	0	5	0	0	0	0	1	0	0			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,151	
8:45 AM	Auto		2	98	14	12	269	3	1	12	66	2	0	3	500		
to	Truck		1	7	1	0	5	0	0	0	2	1	0	1			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,099	
9:00 AM	Auto		9	94	19	15	264	1	3	11	41	1	3	4	484		
to	Truck Bus		1 0	4 0	2	1 0	7 0	0	0	0	1	3 0	0	0		0.000	
9:15 AM											0	<u> </u>	0		-	2,006	
	our Volume		26	427	79	66	1,152	14	11	63	253	32	12	16	2,151		
PHV	(by appro	ach)		532			1,232			327			60				
Peak H	our Factor	(PHF)		0.93			0.94			0.79			0.68				
T	Total Autos	;		508			1,209			326			51				
T	otal Trucks	s		24			23			1			9				
т	otal Buses	;		0			0			0			0				
	% Auto			95.5%			98.1%			99.7%			85.0%		1		
% H	eavy Vehic	eles		4.5%			1.9%			0.3%			15.0%				
	icks & Bus																

PROJECT: CDC Roybal Campus EIS
LOCATION: Clifton Road @ Gatewood Road

TIME PERIOD: AM
WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT START	C	lifton Roa	ad	C	lifton Ro	ad	Gat	ewood F	load	Gat	ewood R (WB)	oad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
7:15 AM	Auto		2	220	28	2	151	3	3	1	2	11	0	2	444		
to	Truck		0	8	2	0	8	0	0	0	0	0	0	1			
7:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:30 AM	Auto		5	223	34	4	165	0	1	0	2	9	0	2	470		
to	Truck		1	5	1	0	17	0	0	0	0	0	0	1			
7:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
7:45 AM	Auto	1	3	280	29	6	146	2	1	0	0	9	0	5	504		
to	Truck		0	11	0	0	11	0	0	0	0	0	0	1			
8:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
8:00 AM	Auto		6	298	40	3	161	3	1	0	2	8	0	1	545		
to	Truck		0	11	3	0	7	0	0	0	0	0	0	1			
8:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,963	
8:15 AM	Auto		9	269	32	1	165	2	0	0	7	11	0	2	518		
to	Truck		0	9	2	0	8	0	0	0	1	0	0	0			
8:30 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,037	
8:30 AM	Auto		14	313	37	3	116	4	0	0	8	14	1	6	535		
to	Truck		0	6	1	1	10	0	0	0	0	0	0	1			
8:45 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,102	
8:45 AM	Auto		13	269	34	4	115	4	0	1	9	9	0	5	493		
to	Truck		0	10	3	0	12	0	0	0	0	1	0	4			
9:00 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,091	
9:00 AM	Auto		13	224	33	3	141	6	0	1	9	18	0	7	480		
to	Truck		0	10	2	2	7	0	0	0	0	2	0	2			
9:15 AM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,026	
Peak Ho	our Volume	e (PHV)	32	1,197	144	14	624	11	2	0	18	42	1	17	2,102		
PHV	(by appro	ach)		1,373			649			20			60				
Peak H	lour Factor	(PHF)		0.93			0.92			0.63			0.68]		
1	Total Autos	;		1,330			612			19			57		1		
т	otal Truck	s		43			37			1			3				
т	Γotal Buses	5		0			0			0			0				
	% Auto			96.9%			94.3%			95.0%			95.0%				
% H	leavy Vehic	eles		3.1%			5.7%			5.0%			5.0%				
	ucks & Bus																

PROJECT: CDC Roybal Campus EIS
LOCATION: Briarcliff Road @ N Decatur Road

TIME PERIOD: PM

TIME	VEHICLE	"1" AT START	Bri	iarcliff Ro (NB)	oad	Bri	iarcliff Ro (SB)	oad	De	ecatur Ro (EB)	oad	De	ecatur Ro (WB)	pad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		9	121	33	17	142	11	9	50	11	73	67	20	580		
to	Truck		0	5	1	0	2	0	0	1	0	7	1	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		14	85	33	14	147	7	7	77	10	57	48	18	535		
to	Truck		0	3	1	1	6	0	0	0	1	3	2	1			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		10	87	40	16	157	5	12	68	8	63	53	24	555		
to	Truck		0	4	1	0	1	1	1	1	1	1	1	0			
4:45 PM	Bus		0 24	99	0	0	0 132	0 8	0 8	0 89	9	0 60	76	0 17	500	+	
4:45 PM to	Auto Truck		0	3	39 2	18 0	3	0	0	1	0	1	0	0	589		
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,259	
5:00 PM	Auto	1	14	84	39	22	143	5	5	98	14	60	52	20	569	2,209	
to	Truck	•	0	5	3	0	1	0	0	2	0	1	1	0	303		
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,248	
5:15 PM	Auto		19	112	36	21	132	7	6	114	13	46	73	18	603	2,210	
to	Truck		0	1	2	0	2	0	0	1	0	0	0	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,316	
5:30 PM	Auto		16	118	31	20	135	7	12	116	14	60	49	18	605	1	
to	Truck		0	3	0	0	1	0	0	0	1	4	0	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,366	
5:45 PM	Auto		9	123	27	29	147	4	13	108	20	54	72	25	641		
to	Truck		0	4	1	0	1	0	0	2	0	1	1	0			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,418	
6:00 PM	Auto		13	117	34	24	147	5	4	106	14	46	85	16	615		
to	to		0	0	0	0	2	0	0	0	0	2	0	0			
6:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,464	
6:15 PM	Auto		10	130	31	24	139	15	11	87	15	53	80	23	623		
to	to		0	1	1	0	0	1	0	0	0	1	1	0		0.404	
6:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,484	
	our Volum		58	450	139	92	562	23	36	441	62	226	248	81	2,418		
	(by appro			647			677			539			555				
Peak F	Hour Facto	r (PHF)		0.95			0.94			0.94			0.91				
•	Total Auto	S		628			672			533			547				
1	Total Truck	s		19			5			6			8				
•	Total Buse	s		0			0			0			0]		
	% Auto			97.1%			99.3%			98.9%			98.6%				
	leavy Vehi			2.9%			0.7%			1.1%			1.4%				
(Tri	ucks & Bus	ses)															

PROJECT: **CDC Roybal Campus EIS** LOCATION: Briarcliff Road @ Clifton Road РМ

TIME PERIOD:

TIME	VEHICLE	"1" AT START	Bri	iarcliff Ro	oad	Bri	arcliff Ro	oad	С	lifton Roa (EB)	ad	C	lifton Ro	ad	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	T	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		0	163	36	72	165	0	0	0	0	76	0	195	725		
to	Truck		0	4	2	3	1	0	0	0	0	3	0	5			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		0	148	36	79	167	0	0	0	0	65	0	190	702		
to	Truck		0	4	0	1	7	0	0	0	0	3	0	2			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		0	166	58	109	216	0	0	0	0	86	0	179	827		
to	Truck		0	2	3	3	3	0	0	0	0	0	0	2			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		0	125	54	100	214	0	0	0	0	75	0	189	771		
to	Truck		0	5	1	1	2	0	0	0	0	2	0	3			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,025	
5:00 PM	Auto	1	0	170	64	105	235	0	0	0	0	79	0	147	811		
to	Truck		0	2	3	2	2	0	0	0	0	1	0	1			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,111	
5:15 PM	Auto		0	131	52	97	216	0	0	0	0	89	0	134	729		
to	Truck		0	3	1	3	3	0	0	0	0	0	0	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,138	
5:30 PM	Auto		0	121	60	94	230	0	0	0	0	68	0	77	656		
to	Truck		0	2	0	1	2	0	0	0	0	0	0	1			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0	201	2,967	
5:45 PM	Auto		0	202	76	101	222	0	0	0	0	67	0	142	821		
to 6:00 PM	Truck Bus		0 0	3	1 0	1 0	2	0	0 0	0	0	1 0	0	3 0		3,017	
																3,017	
	our Volume		0	634	257	404	912	0	0	0	0	305	0	505	3,017	j	
PHV	(by appro	ach)		891			1,316			0			810				
Peak H	lour Factor	(PHF)		0.79			0.96			#DIV/0!			0.89				
Т	Total Autos	3		876			1,300			0			803				
T	otal Trucks	s		15			16			0			7				
т	otal Buses	,		0			0			0			0				
	% Auto			98.3%			98.8%			#DIV/0!			99.1%				
% Н	leavy Vehic	eles		1.7%			1.2%			#DIV/0!			0.9%				
	ıcks & Bus			1.7,5			1.2/3			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.070				

PROJECT: CDC Roybal Campus EIS LOCATION: Briarcliff Road @ LaVista Road

TIME PERIOD: PM

TIME	VEHICLE	"1" AT START	Bri	iarcliff Ro	oad	Bri	arcliff Ro	oad	La	Vista Ro (EB)	ad	La	Vista Ro (WB)	ad	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		30	167	37	19	135	15	13	79	19	36	70	15	654		
to	Truck		1	7	1	0	3	0	0	1	3	0	3	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		30	166	21	17	152	13	13	81	19	30	71	18	651		
to	Truck		3	2	1	0	3	0	0	3	3	1	3	1			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		32	162	36	20	165	10	9	85	14	48	70	18	685		
to	Truck		2	4	1	0	4	0	1	0	2	1	0	1			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		25	166	35	28	161	11	14	91	22	49	54	24	697		
to	Truck		0	3	2	0	4	0	1	2	0	1	3	1			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,687	
5:00 PM	Auto	1	22	162	41	27	165	9	12	79	22	48	89	21	717		
to	Truck		3	5	1	1	2	0	0	5	1	0	0	2			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,750	
5:15 PM	Auto		20	136	29	29	189	12	10	75	20	34	63	24	652		
to	Truck		0	0	2	0	4	0	0	3	1	0	1	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,751	
5:30 PM	Auto		9	83	23	16	174	20	11	85	21	41	77	19	584		
to	Truck		0	1	0	0	2	0	0	1	0	0	1	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,650	
5:45 PM	Auto		27	160	31	31	156	14	12	83	24	45	68	19	684		
to	Truck		1	5	1	0	3	0	0	0	1	1	2	0			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,637	
	our Volume	` ,	82	552	128	104	695	55	45	331	90	169	301	85	2,637		
PHV	(by appro	ach)		762			854			466			555				
Peak H	our Factor	(PHF)		0.81			0.91			0.97			0.87				
Т	Total Autos	;		743			842			454			548				
T	otal Trucks	s		19			12			12			7				
т	otal Buses	;		0			0			0			0				
	% Auto			97.5%			98.6%			97.4%			98.7%		1		
% H	eavy Vehic	eles		2.5%			1.4%			2.6%			1.3%				
(Tru	icks & Bus	es)]		

PROJECT: **CDC Roybal Campus EIS** LOCATION:

North Druid Hills Road @ LaVista Road

TIME PERIOD: PM

TIME	VEHICLE	"1" AT START	N Di	ruid Hill F (NB)	Road	N D	ruid Hill F (SB)	Road	La	Vista Ro	ad	La	aVista Ro	oad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	т	R	L	Т	R	L	т	R	L	т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		47	183	16	29	287	34	56	153	99	28	53	16	1,012		
to	Truck		2	3	1	0	0	0	0	2	1	0	1	1			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		68	206	21	23	276	18	57	146	68	21	83	18	1,018		
to	Truck		0	1	0	0	4	1	0	4	2	0	1	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		62	204	28	29	274	22	61	162	93	25	67	18	1,059		
to	Truck		1	2	0	0	4	0	1	2	1	0	2	1			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		60	182	11	31	259	20	61	176	73	23	85	20	1,015		
to	Truck		1	2	0	0	6	0	0	2	1	0	2	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		4,104	
5:00 PM	Auto	1	60	178	24	35	291	14	73	167	80	24	73	23	1,056		
to	Truck		0	0	0	0	6	0	2	2	3	0	1	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		4,148	
5:15 PM	Auto		65	196	21	33	313	23	64	158	77	39	112	24	1,136		
to	Truck		0	1	0	0	1	0	1	3	4	0	1	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		4,266	
5:30 PM	Auto		59	197	19	22	335	20	76	156	86	29	105	30	1,139		
to	Truck		1	1	0	0	0	0	0	1	2	0	0	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		4,346	
5:45 PM	Auto		67	223	15	25	311	27	71	150	69	28	98	31	1,133		
to	Truck		4	1	1	1	6	1	0	1	0	0	2	1		4 404	
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		4,464	
	our Volum	` '	256	797	80	116	1,263	85	287	638	321	120	392	109	4,464		
	(by appro			1,133			1,464			1,246			621				
	lour Factor	` '		0.91			0.97			0.95			0.88				
7	Total Autos	3		1,124			1,449			1,227			616				
Т	otal Truck	s		9			15			19			5				
7	Total Buses	\$		0			0			0			0				
	% Auto			99.2%			99.0%			98.5%			99.2%				
% H	leavy Vehic	cles		0.8%			1.0%			1.5%			0.8%				
(Tru	ucks & Bus	es)													I		

PROJECT: **CDC Roybal Campus EIS** LOCATION: Clairmont Road @ Mason Mill Road PM

TIME PERIOD:

TIME	VEHICLE	"1" AT START	Cla	irmont R	oad	Cla	irmont R (SB)	oad	Mas	on Mill F	Road	Mas	on Mill F (WB)	Road	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		26	327	0	0	231	20	83	0	31	0	0	0	722		
to	Truck		0	2	0	0	1	0	1	0	0	0	0	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		30	373	0	0	259	27	95	0	34	0	0	0	822		
to	Truck		0	1	0	0	2	1	0	0	0	0	0	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		36	338	0	0	225	24	82	0	42	0	0	0	756		
to	Truck		0	3	0	0	3	0	2	0	1	0	0	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		52	375	0	0	255	28	69	0	33	0	0	0	822		
to	Truck		0	5	0	0	4	0	1	0	0	0	0	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,122	
5:00 PM	Auto	1	40	347	0	0	279	25	67	0	44	0	0	0	807		
to	Truck		0	2	0	0	2	0	1	0	0	0	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,207	
5:15 PM	Auto		57	340	0	0	257	26	90	0	51	0	0	0	825		
to	Truck		0	1	0	0	2	1	0	0	0	0	0	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,210	
5:30 PM	Auto		31	376	0	0	298	27	76	0	40	0	0	0	857		
to	Truck		1	4	0	0	3	1	0	0	0	0	0	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,311	
5:45 PM	Auto		34	321	0	0	266	19	72	0	54	0	0	0	771		
to 6:00 PM	Truck		0	2	0	0	2	1	0	0	0	0	0	0		0.000	
	Bus		0	0	0	0	0	0	0	0	0	0	0	0	-	3,260	
	our Volume	` ,	163	1,393	0	0	1,109	100	306	0	189	0	0	0	3,260		
	(by appro	•		1,556			1,209			495			0				
	lour Factor	` '		0.94			0.92			0.88			#DIV/0!				
1	Total Autos	3		1,546			1,197			494			0				
Т	otal Trucks	s		10			12			1			0				
т	otal Buses	s		0			0			0			0				
	% Auto			99.4%			99.0%			99.8%			#DIV/0!				
% H	leavy Vehic	eles		0.6%			1.0%			0.2%			#DIV/0!				
(Tru	ıcks & Bus	es)															

PROJECT: **CDC Roybal Campus EIS** LOCATION:

Houston Mill Road @ Mason Mill Road

TIME PERIOD:

PM

TIME	VEHICLE	"1" AT START	Hous	ston Mill (NB)	Road	Hous	ston Mill (SB)	Road	Mas	on Mill F	Road	Mas	on Mill F (WB)	Road	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		1	127	110	10	28	0	1	0	3	21	3	25	330		
to	Truck		0	0	0	0	0	0	1	0	0	0	0	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		2	138	102	18	34	4	0	4	0	39	3	21	370		
to	Truck		0	2	1	0	1	0	1	0	0	0	0	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		3	146	84	15	38	2	1	2	1	28	2	19	344		
to	Truck		0	2	0	0	1	0	0	0	0	0	0	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		1	151	92	19	47	1	0	4	2	44	0	35	399		
to	Truck		0	0	1	1	0	0	0	0	0	0	0	1			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,443	
5:00 PM	Auto	1	1	133	110	24	34	2	3	3	2	29	3	37	381		
to	Truck		0	0	0	0	0	0	0	0	0	0	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,494	
5:15 PM	Auto		3	168	97	23	54	2	1	1	0	32	7	31	420		
to	Truck		0	0	0	0	0	0	0	0	0	0	1	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,544	
5:30 PM	Auto		1	137	104	24	40	2	3	3	4	38	4	27	388		
to	Truck		0	0	0	0	0	0	0	0	0	0	0	1			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,588	
5:45 PM	Auto		4	156	84	27	56	1	6	4	3	29	3	18	391		
to	Truck		0	0	0	0	0	0	0	0	0	0	0	0			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,580	
Peak Ho	our Volume	e (PHV)	9	594	395	98	184	7	13	11	9	128	18	114	1,580		
PHV	(by appro	ach)		998			289			33			260				
Peak H	lour Factor	(PHF)		0.93			0.86			0.63			0.92				
1	Total Autos	;		998			289			33			258				
Т	otal Truck	s		0			0			0			2				
Т	Total Buses	5		0			0			0			0				
	% Auto			100.0%			100.0%			100.0%			99.2%		1		
% H	leavy Vehic	eles		0.0%			0.0%			0.0%			0.8%				
	ıcks & Bus																

PROJECT: CDC Roybal Campus EIS FILE NAME: TMC Summary.xls

LOCATION: Clairmont Road @ N Decatur Road

COUNT DATE: Enter Here WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT	Cla	irmont R	oad	Cla	irmont R (SB)	oad	North	Decatur (EB)	Road	North	Decatur (WB)	Road	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	START OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	HOURLY VOLUME
4:00 PM	Auto		33	111	21	34	190	31	56	207	57	41	109	13	920		
to	Truck		0	1	0	0	1	1	1	5	2	0	6	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		27	144	18	39	187	31	59	204	56	41	91	17	932		
to	Truck		2	1	0	0	1	0	0	4	2	0	6	2			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		33	121	17	39	182	39	61	198	67	32	112	17	934		
to	Truck		0	2	0	0	3	1	0	6	0	0	4	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		30	127	8	31	176	42	61	202	61	37	103	21	914		
to	Truck		1	0	0	0	4	0	0	3	3	0	4	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,700	
5:00 PM	Auto	1	33	141	22	31	187	42	65	202	60	39	110	17	965		
to	Truck		3	1	0	0	5	0	1	3	1	0	2	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,745	
5:15 PM	Auto		32	163	14	33	189	43	61	206	58	39	125	11	991		
to	Truck		1	2	0	0	1	1	1	5	1	0	3	2			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,804	
5:30 PM	Auto		30	149	13	36	189	38	50	208	58	41	134	11	967		
to	Truck		1	1	0	0	0	0	1	4	1	0	1	1			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,837	
5:45 PM	Auto		32	152	12	38	168	33	66	204	65	38	116	10	947		
to	Truck		2	0	0	1	1	1	0	3	1	0	4	0			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,870	
Peak Ho	our Volume	e (PHV)	134	609	61	139	740	158	245	835	245	157	495	52	3,870		
PHV	(by appro	ach)		804			1,037			1,325			704				
Peak H	lour Factor	(PHF)		0.95			0.97			0.98			0.94				
7	Total Autos	;		793			1,027			1,303			691				
Т	otal Truck	s		11			10			22			13				
Т	Total Buses	5		0			0			0			0				
	% Auto			98.6%			99.0%			98.3%			98.2%				
% H	leavy Vehic	eles		1.4%			1.0%			1.7%			1.8%				
(Tru	ucks & Bus	es)															

PROJECT: **CDC Roybal Campus EIS** Haygood Drive @ N Decatur Road PM LOCATION:

TIME PERIOD:

TIME	VEHICLE	"1" AT START	На	ygood Di (NB)	rive	Ha	ygood Di (SB)	rive	N D	ecatur R	oad	N E	Decatur R (WB)	oad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		0	0	0	167	0	7	5	157	0	0	113	60	525		
to	Truck		0	0	0	1	0	0	0	6	0	0	6	3			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		0	0	0	172	0	6	8	160	0	0	118	66	549		
to	Truck		0	0	0	4	0	3	0	4	0	0	7	1			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		0	0	0	174	0	6	2	130	0	0	97	54	479		
to	Truck		0	0	0	3	0	1	0	6	0	0	5	1			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		0	0	0	161	0	6	4	171	0	0	98	61	513		
to	Truck		0	0	0	1	0	0	0	5	0	0	5	1			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,066	
5:00 PM	Auto	1	0	0	0	169	0	10	1	179	0	0	143	55	573		
to	Truck		0	0	0	2	0	0	0	9	0	0	5	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,114	
5:15 PM	Auto		0	0	0	153	0	2	6	156	0	0	126	58	512		
to	Truck		0	0	0	2	0	0	0	3	0	0	4	2			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,077	
5:30 PM	Auto		0	0	0	152	0	11	6	149	0	0	146	54	528		
to	Truck		0	0	0	0	0	0	0	5	0	0	5	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,126	
5:45 PM	Auto		0	0	0	170	0	11	5	146	0	0	123	47	512		
to	Truck		0	0	0	4	0	0	0	5	0	0	1	0		2 125	
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,125	
	our Volume	` ′	0	0	0	652	0	34	18	652	0	0	553	216	2,125		
	(by appro			0			686			670			769				
Peak H	lour Factor	(PHF)		#DIV/0!			0.93			0.89			0.94				
1	Total Autos	•		0			678			648			752				
Т	otal Trucks	s		0			8			22			17				
Т	otal Buses	;		0			0			0			0				
	% Auto			#DIV/0!			98.8%			96.7%			97.8%		1		
% H	leavy Vehic	eles		#DIV/0!			1.2%			3.3%			2.2%				
(Tru	ıcks & Bus	es)															

LOCATION: Clifton Road @ N Decatur Road

WEATHER/PAVEMENT: Clear/Dry

TIME	VEHICLE	"1" AT	С	lifton Roa	ad	С	lifton Ro	ad	N D	ecatur R	oad	N E	Decatur R	Road	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	START OF PEAK	L	T	R	L	Т	R	L	T	R	L	T	R	VOLUME	VOLUME	HOURLY VOLUME
4:00 PM	Auto		2	26	3	86	98	87	46	96	2	0	97	32	595		
to	Truck		0	2	0	6	2	2	2	1	0	0	1	4			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		2	19	5	104	87	78	41	88	1	1	87	23	551		
to	Truck		0	0	0	4	0	4	1	0	0	0	3	3			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		0	17	0	80	99	95	47	101	4	0	83	31	579		
to	Truck		0	0	0	3	0	3	4	5	0	0	2	5			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		1	17	8	80	110	91	39	111	13	0	66	27	579		
to	Truck		0	0	0	4	1	3	1	1	0	0	2	4			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,304	
5:00 PM	Auto	1	2	21	6	98	103	95	36	95	6	1	79	39	597		
to	Truck		0	1	1	8	0	0	1	1	0	0	0	4			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,306	
5:15 PM	Auto		0	24	8	108	105	82	36	102	6	1	113	34	631		
to	Truck		0	0	0	1	1	2	1	3	0	0	2	2			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,386	
5:30 PM	Auto		2	19	5	104	121	83	43	92	6	3	91	32	623		
to	Truck		0	1	0	7	0	7	0	0	0	0	1	6			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,430	
5:45 PM	Auto		1	34	4	82	111	80	44	101	16	0	101	40	624		
to	Truck		0	0	0	2	1	2	2	2	0	0	1	0			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,475	
Peak Ho	our Volum	e (PHV)	5	100	24	410	442	351	163	396	34	5	388	157	2,475		
PHV	(by appro	ach)		129			1,203			593			550				
Peak H	lour Factor	(PHF)		0.83			0.93			0.90			0.90				
7	Total Autos	;		126			1,172			583			534				
Т	otal Truck	s		3			31			10			16				
Т	Total Buses	5		0			0			0			0				
	% Auto			97.7%			97.4%			98.3%			97.1%				
% H	leavy Vehic	eles		2.3%			2.6%			1.7%			2.9%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Clifton Road @ Haygood Drive

TIME PERIOD: PI

TIME	VEHICLE	"1" AT START	С	lifton Roa	ad	C	lifton Ro	ad	As	bury Cir	cle	На	ygood Di (WB)	rive	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		8	125	6	87	190	26	43	13	12	12	6	41	589		
to	Truck		0	5	0	2	5	1	0	0	4	1	0	2			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		8	113	3	92	145	31	32	19	4	12	8	64	549		
to	Truck		0	7	1	0	5	0	0	0	4	0	0	1			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		3	103	3	82	189	34	34	15	5	9	16	46	559		
to	Truck		0	5	1	0	8	0	1	0	4	0	0	1			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		8	110	8	72	181	34	31	11	10	9	15	75	585		
to	Truck		0	9	1	0	7	1	0	0	3	0	0	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,282	
5:00 PM	Auto	1	7	140	4	86	228	47	44	20	6	6	5	47	658		
to	Truck		0	3	1	1	8	0	0	0	3	2	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,351	
5:15 PM	Auto		7	117	2	89	243	41	42	19	5	9	10	49	651		
to	Truck		0	6	1	1	5	0	2	0	2	1	0	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,453	
5:30 PM	Auto		6	130	3	81	242	55	48	21	17	10	15	53	698		
to	Truck		0	6	0	1	6	0	0	0	3	0	0	1			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,592	
5:45 PM	Auto		8	130	1	68	196	59	57	17	9	7	15	54	638		
to	Truck		0	5	0	0	7	0	1	0	3	0	0	1		0.045	
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,645	
	our Volume	` ′	28	537	12	327	935	202	194	77	48	35	45	205	2,645]	
	(by appro			577			1,464			319			285				
	our Factor	` '		0.93			0.95			0.90			0.90				
1	Total Autos	•		555			1,435			305			280				
Т	otal Trucks	s		22			29			14			5				
т	otal Buses	s		0			0			0			0				
	% Auto			96.2%	_		98.0%	_		95.6%	_		98.2%				
% H	eavy Vehic	eles		3.8%			2.0%			4.4%			1.8%				
(Tru	ıcks & Bus	es)															

PROJECT: **CDC Roybal Campus EIS** LOCATION:

Clairmont Road @ N Druid Hills Road

PM TIME PERIOD:

TIME	VEHICLE	"1" AT START	Cla	irmont R	oad	Cla	irmont R (SB)	oad	N Di	ruid Hill F	Road	N Di	ruid Hill I	Road	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	т	R	L	Т	R	L	т	R	L	Т	R*	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		132	211	41	105	136	15	12	282	82	25	162	49	1,269		
to	Truck		0	2	0	1	1	0	1	3	0	2	7	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		137	219	44	90	167	17	18	265	97	20	153	40	1,283		
to	Truck		1	1	0	1	2	0	0	7	0	1	2	1			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		128	219	40	97	133	12	22	278	104	16	162	41	1,267		
to	Truck		1	2	0	1	3	0	0	5	0	0	3	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		139	212	50	102	153	13	18	278	122	15	137	47	1,304		
to	Truck		1	3	1	0	4	0	0	7	0	0	2	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		5,123	
5:00 PM	Auto	1	146	213	34	105	137	11	12	274	98	24	125	45	1,233		
to	Truck		1	1	0	0	0	0	0	7	0	0	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		5,087	
5:15 PM	Auto		143	236	45	100	182	12	18	273	110	18	162	46	1,358		
to	Truck		1	1	0	1	2	0	0	5	0	1	1	1			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		5,162	
5:30 PM	Auto		135	208	38	111	173	13	15	268	100	25	164	34	1,291		
to	Truck		1	3	0	0	1	0	0	2	0	0	0	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		5,186	
5:45 PM	Auto		151	217	43	104	193	11	18	287	111	22	153	47	1,365		
to	Truck		0	1	0	1	2	0	0	2	0	0	1	1			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		5,247	
Peak Ho	our Volume	e (PHV)	578	880	160	422	690	47	63	1,118	419	90	606	174	5,247		
PHV	(by appro	ach)		1,618			1,159			1,600			870				
Peak H	lour Factor	(PHF)		0.95			0.93			0.96			0.95				
1	Total Autos	3		1,609			1,152			1,584			865				
т	otal Truck	S		9			7			16			5				
Т	Total Buses	5		0			0			0			0				
	% Auto			99.4%			99.4%			99.0%			99.4%		1		
% H	leavy Vehic	eles		0.6%			0.6%			1.0%			0.6%				
	ıcks & Bus																

^{*} Changed based on later count

PROJECT: CDC Roybal Campus EIS
LOCATION: Clairmont Road @ LaVista Road

TIME PERIOD: PM

TIME	VEHICLE	"1" AT START	Cla	irmont R (NB)	oad	Cla	irmont R (SB)	oad	La	Vista Ro (EB)	ad	La	Vista Ro (WB)	ad	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		5	217	8	46	213	38	63	110	8	48	55	19	843		
to	Truck		0	3	0	1	2	0	0	4	1	0	2	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		2	218	9	44	236	36	55	122	8	35	73	28	874		
to	Truck		0	1	0	1	1	0	0	4	0	0	1	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		8	211	10	40	227	35	64	133	6	27	67	19	862		
to	Truck		0	2	1	0	3	1	0	3	0	1	3	1			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		2	199	6	53	266	65	53	122	6	29	71	22	908		
to	Truck		0	3	0	3	4	0	1	2	0	0	1	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,487	
5:00 PM	Auto	1	5	198	11	62	244	47	54	131	5	29	68	16	877		
to	Truck		0	1	0	1	1	1	0	3	0	0	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,521	
5:15 PM	Auto		8	209	10	52	249	52	48	133	3	38	93	17	919		
to	Truck		0	2	0	0	2	0	0	1	0	1	1	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,566	
5:30 PM	Auto		4	176	11	55	304	43	64	127	3	41	73	18	927		
to	Truck		0	3	0	0	2	0	0	2	0	1	0	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,631	
5:45 PM	Auto		2	207	12	44	313	54	62	130	4	47	81	20	985		
to	Truck		0	1	0	0	2	0	0	2	0	0	3	1			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,708	
Peak Ho	our Volume	e (PHV)	19	797	44	214	1,117	197	228	529	15	157	319	72	3,708		
PHV	(by appro	ach)		860			1,528			772			548				
Peak H	lour Factor	(PHF)		0.94			0.92			0.97			0.90				
1	Total Autos	3		853			1,519			764			541				
т	otal Trucks	s		7			9			8			7				
т	otal Buses	3		0			0			0			0				
	% Auto			99.2%			99.4%			99.0%			98.7%				
% H	leavy Vehic	eles		0.8%			0.6%			1.0%			1.3%				
(Tru	ıcks & Bus	ses)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Houston Mill Road @ Clifton Road

TIME PERIOD: PM

TIME	VEHICLE	"1" AT START	Hous	ston Mill (NB)	Road	Hous	ston Mill (SB)	Road	С	lifton Ro	ad	С	lifton Ro (WB)	ad	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		48	105	63	32	12	20	41	128	9	15	136	68	691		
to	Truck		0	0	2	0	0	0	0	5	0	2	5	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		56	117	74	35	8	23	45	118	6	7	122	71	698		
to	Truck		0	0	2	0	0	1	0	4	0	2	6	1			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		59	95	78	38	11	27	62	137	17	8	113	50	712		
to	Truck		1	0	2	0	0	0	1	6	0	2	3	2			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		86	105	93	33	9	29	55	129	16	17	116	71	781		
to	Truck		0	0	2	1	0	0	2	6	0	1	10	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,882	
5:00 PM	Auto	1	56	100	86	51	9	24	59	178	13	11	123	76	792		
to	Truck		0	0	1	0	0	0	0	3	0	1	1	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,983	
5:15 PM	Auto		44	85	76	57	2	33	45	159	13	8	127	83	741		
to	Truck		0	0	1	0	0	0	0	3	0	1	4	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,026	
5:30 PM	Auto		72	95	77	42	14	16	67	185	19	19	124	65	807		
to	Truck		0	0	2	0	0	0	0	4	0	1	5	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,121	
5:45 PM	Auto		55	72	54	48	10	19	61	177	14	8	126	74	729		
to	Truck		0	0	2	0	0	0	0	4	0	3	1	1			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		3,069	
Peak H	our Volume	e (PHV)	227	352	299	198	35	92	232	713	59	52	511	299	3,069		
PHV	(by appro	ach)		878			325			1,004			862				
Peak H	lour Factor	(PHF)		0.89			0.88			0.91			0.97				
٦	Total Autos	;		872			325			990			844				
Т	otal Truck	s		6			0			14			18				
1	Total Buses	6		0			0			0			0				
	% Auto			99.3%			100.0%			98.6%			97.9%		1		
% H	leavy Vehic	eles		0.7%			0.0%			1.4%			2.1%				
(Tru	ucks & Bus	es)															

PROJECT: **CDC Roybal Campus EIS** LOCATION: Houston Mill Road @ LaVista Road РМ

TIME PERIOD:

TIME	VEHICLE	"1" AT START	Hous	ston Mill (NB)	Road	Hous	ston Mill (SB)	Road	La	Vista Ro (EB)	ad	La	Vista Ro (WB)	ad	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		30	0	133	0	0	0	0	163	14	30	103	0	480		
to	Truck		0	0	1	0	0	0	0	2	0	1	3	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		31	0	128	0	0	0	0	133	23	31	132	0	493		
to	Truck		1	0	1	0	0	0	0	5	2	0	6	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		21	0	140	0	0	0	0	183	28	44	129	0	554		
to	Truck		1	0	3	0	0	0	0	2	0	1	2	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		37	0	131	0	0	0	0	175	31	39	128	0	549		
to	Truck		0	0	1	0	0	0	0	3	0	0	4	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,076	
5:00 PM	Auto	1	37	0	138	0	0	0	0	205	35	38	110	0	568		
to	Truck		0	0	0	0	0	0	0	5	0	0	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,164	
5:15 PM	Auto		33	0	170	0	0	0	0	188	21	51	119	0	587		
to	Truck		0	0	0	0	0	0	0	4	0	0	1	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,258	
5:30 PM	Auto		31	0	155	0	0	0	0	165	33	45	129	0	561		
to	Truck		0	0	0	0	0	0	0	3	0	0	0	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,265	
5:45 PM	Auto		29	0	130	0	0	0	0	164	37	43	152	0	561		
to	Truck		0	0	0	0	0	0	0	1	0	0	5	0			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,277	
	our Volume	` ,	130	0	593	0	0	0	0	735	126	177	516	0	2,277		
PHV	(by appro	ach)		723			0			861			693				
Peak H	lour Factor	(PHF)		0.89			#DIV/0!			0.88			0.87				
1	Total Autos	;		723			0			848			687				
Т	otal Trucks	s		0			0			13			6				
Т	otal Buses	5		0			0			0			0				
	% Auto			100.0%			#DIV/0!			98.5%			99.1%		1		
% H	leavy Vehic	eles		0.0%			#DIV/0!			1.5%			0.9%				
	ıcks & Bus																

PROJECT: CDC Roybal Campus EIS
LOCATION: Briarcliff Road @ Shephards Lane

TIME PERIOD: PM

TIME	VEHICLE	"1" AT START	Bri	iarcliff Ro	oad	Bri	iarcliff Ro	oad	Sh	epards L (EB)	ane	Sh	epards L (WB)	ane	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		129	224	0	0	184	5	2	0	47	0	0	0	606		
to	Truck		1	9	0	0	5	0	0	0	0	0	0	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		111	221	0	0	178	5	11	0	48	0	0	0	588		
to	Truck		1	4	0	0	7	0	0	0	2	0	0	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		115	223	0	0	234	5	4	0	70	0	0	0	663		
to	Truck		1	5	0	0	4	0	0	0	2	0	0	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		105	205	0	0	246	7	4	0	64	0	0	0	639		
to	Truck		0	5	0	0	3	0	0	0	0	0	0	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,496	
5:00 PM	Auto	1	89	228	0	0	247	9	6	0	65	0	0	0	654		
to	Truck		0	5	0	0	3	0	0	0	2	0	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,544	
5:15 PM	Auto		103	171	0	0	222	9	6	0	74	0	0	0	592		
to	Truck		0	2	0	0	5	0	0	0	0	0	0	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,548	
5:30 PM	Auto		64	95	0	0	253	3	2	0	67	0	0	0	491		
to	Truck		2	3	0	0	2	0	0	0	0	0	0	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,376	
5:45 PM	Auto		106	239	0	0	237	8	5	0	86	0	0	0	690		
to 6:00 PM	Truck		0	6	0	0	3	0	0	0	0	0	0	0		0.407	
	Bus		0	0	0	0	0	0	0	0	0	0	0	0	-	2,427	
	our Volume	` ,	364	749	0	0	972	29	19	0	294	0	0	0	2,427		
	(by appro	•		1,113			1,001			313			0		1		
	lour Factor	` '		0.79			0.97			0.86			#DIV/0!				
7	Total Autos	3		1,095			988			311			0				
Т	otal Trucks	s		18			13			2			0				
т	otal Buses	s		0			0			0			0				
	% Auto			98.4%			98.7%			99.4%			#DIV/0!				
% H	leavy Vehic	eles		1.6%			1.3%			0.6%			#DIV/0!				
(Tru	ıcks & Bus	es)															

PROJECT: **CDC Roybal Campus EIS** LOCATION:

Briarcliff Road @ Johnson-Zonolite Road

PM TIME PERIOD:

TIME	VEHICLE	"1" AT START	Br	iarcliff Ro	oad	Bri	iarcliff Ro	oad	Johns	on-Zono (EB)	lite Rd	Johns	on-Zono (WB)	lite Rd	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		9	111	8	14	116	93	60	12	12	17	15	12	491		
to	Truck		3	2	0	1	2	1	2	0	1	0	0	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		6	99	6	13	122	85	72	23	6	15	25	4	493		
to	Truck		1	2	1	0	5	4	2	0	2	0	0	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		9	111	3	14	154	115	81	13	11	18	17	2	559		
to	Truck		1	3	0	0	2	2	2	0	1	0	0	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		9	97	9	5	153	109	59	10	16	15	23	6	519		
to	Truck		0	2	0	0	2	2	2	0	0	0	0	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,062	
5:00 PM	Auto	1	8	115	2	8	167	125	80	14	6	16	27	0	578		
to	Truck		0	2	1	0	1	2	3	0	1	0	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,149	
5:15 PM	Auto		10	123	7	13	158	135	73	16	7	9	18	6	581		
to	Truck		0	1	0	0	2	1	2	0	0	0	0	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,237	
5:30 PM	Auto		8	44	6	23	146	120	80	14	3	21	35	16	520		
to	Truck		1	0	0	0	1	0	1	0	0	0	1	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,198	
5:45 PM	Auto		7	152	2	22	152	109	98	18	4	14	34	11	631		
to	Truck		1	2	1	0	1	2	1	0	0	0	0	0			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,310	
	our Volum	` '	35	439	19	66	628	494	338	62	21	60	115	33	2,310		
PHV	(by appro	ach)		493			1,188			421			208				
Peak H	lour Factor	(PHF)		0.75			0.96			0.87			0.71]		
7	Total Autos	3		484			1,178			413			207				
Т	otal Truck	s		9			10			8			1				
Т	Total Buses	5		0			0			0			0				
	% Auto			98.2%			99.2%			98.1%			99.5%		1		
% H	leavy Vehic	cles		1.8%			0.8%			1.9%			0.5%				
(Tru	ucks & Bus	es)															

PROJECT: CDC Roybal Campus EIS FILE NAME: TMC Summary.xls

LOCATION: Houston Mill Road @ CDC Entrance

COUNT DATE: Enter Here WEATHER/PAVEMENT: Clear/Dry

Recounted from original counts in 2012. Not new counts!

TURNING MOVEMENT COUNT SUMMARY

TIME	VEHICLE	"1" AT START	Bri	ar Cliff R	oad	Bria	ar Cliff R (SB)	oad	CE	C Entrar	ісе		0 (WB)		15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	т	R	L	Т	R	L	т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		0	62	5	9	2	4	106	0	15	0	0	15	220		
to	Truck		0	2	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		0	60	0	6	2	4	86	0	8	0	0	12	181		
to	Truck		0	2	0	0	1	0	0	0	0	0	0	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		0	90	0	10	5	2	93	0	11	0	0	20	234		
to	Truck		0	3	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		1	75	0	7	3	2	108	0	8	0	0	13	219		
to	Truck		0	2	0	0	0	0	0	0	0	0	0	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		854	
5:00 PM	Auto	1	0	65	0	4	2	3	92	0	6	0	0	22	194		
to	Truck		0	0	0	0	0	0	0	0	0	0	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		828	
5:15 PM	Auto		0	77	0	7	3	0	84	0	16	0	0	13	200		
to	Truck		0	0	0	0	0	0	0	0	0	0	0	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		847	
5:30 PM	Auto		0	62	1	4	5	1	60	0	12	0	0	11	156		
to	Truck		0	0	0	0	0	0	0	0	0	0	0	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		769	
5:45 PM	Auto		0	53	0	4	0	2	61	0	2	0	0	6	128		
to	Truck		0	0	0	0	0	0	0	0	0	0	0	0			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		678	
Peak Ho	our Volum	e (PHV)	0	257	1	19	10	6	297	0	36	0	0	52	678		
PHV	(by appro	ach)		258			35			333			52				
Peak H	lour Factor	r (PHF)		0.84			0.88			0.83			0.59				
1	Total Autos	3		258			35			333			52				
т	otal Truck	s		0			0			0			0				
т	Total Buses	s		0			0			0			0				
	% Auto			100.0%			100.0%			100.0%			100.0%		1		
% H	leavy Vehic	cles		0.0%			0.0%			0.0%			0.0%				
	ıcks & Bus																

Peds

PROJECT: CDC Roybal Campus EIS
LOCATION: CDC Entrance @ Clifton Road

TIME PERIOD: PM

TIME	VEHICLE	"1" AT START	CE	OC Entrai	псе	CE	C Entrai	псе	С	lifton Ro	ad	С	lifton Ro	ad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	T	R	L	Т	R	L	T	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		81	0	55	0	1	5	10	117	15	6	212	1	517		
to	Truck		0	0	1	0	0	1	0	5	0	0	7	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		105	0	49	2	0	2	4	104	9	13	157	4	456		
to	Truck		0	0	0	0	0	1	0	1	0	0	5	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		85	0	44	1	0	3	12	160	14	12	222	3	567		
to	Truck		0	0	0	0	0	0	1	6	1	0	3	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		98	0	53	0	0	6	11	134	12	14	211	2	553		
to	Truck		0	0	1	0	0	0	0	4	1	0	6	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,093	
5:00 PM	Auto	1	94	1	56	3	1	7	4	156	15	15	196	1	557		
to	Truck		0	0	0	0	0	1	0	5	0	0	2	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,133	
5:15 PM	Auto		121	0	57	3	0	1	4	180	5	10	216	1	604		
to	Truck		0	0	1	0	0	0	0	5	0	0	0	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,281	
5:30 PM	Auto		98	0	47	4	0	8	3	152	9	12	180	2	526		
to	Truck		1	0	1	0	0	0	0	2	1	0	6	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,240	
5:45 PM	Auto		73	0	39	5	0	6	2	173	9	12	150	5	480		
to	Truck		0	0	0	0	0	0	0	5	0	0	1	0			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,167	
	our Volume	` '	387	1	201	15	1	23	13	678	39	49	751	9	2,167		
PHV	(by appro	ach)		589			39			730			809				
Peak H	lour Factor	(PHF)		0.82			0.81			0.94			0.89				
1	Total Autos	;		586			38			712			800				
Т	otal Trucks	s		3			1			18			9				
Т	otal Buses	•		0			0			0			0				
	% Auto			99.5%			97.4%			97.5%			98.9%				
% H	leavy Vehic	eles		0.5%			2.6%			2.5%			1.1%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Emory Conference Center

Emory Conference Center @ Clifton Road

TIME PERIOD: PM

TIME	VEHICLE	"1" AT START	Em	ory Conf	Ctr	Em	ory Conf	Ctr	С	lifton Ro	ad	C	lifton Roa	ad	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		0	0	0	20	0	17	9	184	0	0	203	7	451		
to	Truck		0	0	0	0	0	0	0	4	0	0	6	1			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		0	0	0	22	0	17	4	162	0	0	193	8	420		
to	Truck		0	0	0	3	0	0	0	5	0	0	5	1			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		0	0	0	22	0	22	3	174	0	0	188	11	432		
to	Truck		0	0	0	2	0	0	0	6	0	0	2	2			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		0	0	0	33	0	21	6	189	0	0	207	10	478		
to	Truck		0	0	0	0	0	0	0	5	0	0	6	1			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,781	
5:00 PM	Auto	1	0	0	0	35	0	21	4	205	0	0	188	11	477		
to	Truck		0	0	0	2	0	0	0	7	0	0	4	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,807	
5:15 PM	Auto		0	0	0	40	0	27	4	176	0	0	212	8	476		
to	Truck		0	0	0	1	0	0	1	5	0	0	1	1			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,863	
5:30 PM	Auto		0	0	0	32	0	33	9	202	0	0	227	10	524		
to	Truck		0	0	0	0	0	1	0	4	0	0	5	1			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,955	
5:45 PM	Auto		0	0	0	30	0	27	11	173	0	0	208	13	468		
to	Truck		0	0	0	1	0	0	0	3	0	0	2	0			
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,945	
Peak Ho	our Volum	e (PHV)	0	0	0	141	0	109	29	775	0	0	847	44	1,945		
PHV	(by appro	ach)		0			250			804			891				
Peak H	lour Factor	(PHF)		#DIV/0!			0.92			0.93			0.92				
7	Total Autos	3		0			245			784			877				
т	otal Truck	s		0			5			20			14				
Т	Total Buses	3		0			0			0			0				
	% Auto			#DIV/0!			98.0%			97.5%			98.4%				
% H	leavy Vehic	eles		#DIV/0!			2.0%			2.5%			1.6%				
(Tru	ucks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Emory Conference Center

Emory Conference Center (Hotel) @ Clifton Road PM

TIME PERIOD: PM

TIME	VEHICLE	"1" AT START	Emory	Conf Ctr (NB)	(Hotel)	Emory	Conf Ctr (SB)	(Hotel)	С	lifton Ro	ad	C	lifton Ro	ad	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		0	0	0	2	0	4	0	166	0	0	203	2	392		
to	Truck		0	0	0	0	0	2	0	9	0	0	4	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		0	0	0	1	0	6	1	167	0	0	199	2	383		
to	Truck		0	0	0	0	0	0	0	1	0	0	6	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		0	0	0	1	0	5	1	191	0	0	207	0	415		
to	Truck		0	0	0	0	0	0	0	7	0	0	3	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		0	0	0	1	0	1	2	198	0	0	247	5	466		
to	Truck		0	0	0	0	0	0	0	5	0	0	7	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,656	
5:00 PM	Auto	1	0	0	0	1	0	1	1	233	0	0	202	4	449		
to	Truck		0	0	0	0	0	0	0	6	0	0	1	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,713	
5:15 PM	Auto		0	0	0	0	0	7	1	216	0	0	226	1	456		
to	Truck		0	0	0	0	0	0	0	2	0	0	3	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,786	
5:30 PM	Auto		0	0	0	3	0	3	2	208	0	0	213	2	437		
to	Truck		0	0	0	0	0	0	0	2	0	0	4	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0	407	1,808	
5:45 PM	Auto		0	0	0	0	0	4	1	228	0	0	193	6	437		
to	Truck		0	0	0	0	0	0	0	4	0	0	1	0		4 770	
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,779	
	our Volume	` '	0	0	0	4	0	15	5	899	0	0	843	13	1,779		
	(by appro	•		0			19			904			856				
Peak H	lour Factor	(PHF)		#DIV/0!			0.68			0.94			0.93				
Т	Total Autos	•		0			19			890			847				
T	otal Trucks	s		0			0			14			9				
Т	otal Buses	3		0			0			0			0				
	% Auto			#DIV/0!			100.0%			98.5%			98.9%				
% H	leavy Vehic	eles		#DIV/0!			0.0%			1.5%			1.1%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Clifton Road @ Briarcliff Way

TIME PERIOD: PM

TIME	VEHICLE	"1" AT START	С	lifton Roa (NB)	ad	C	lifton Ro	ad	Old	Briarcliff (EB)	Way	Old	Briarcliff (WB)	Way	15-MIN.	HOURLY	HIGHEST HOURLY
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		46	241	11	6	93	1	2	4	17	19	7	17	479		
to	Truck		0	7	1	0	5	0	0	1	0	1	0	0			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		34	244	12	3	101	2	0	3	11	19	10	15	460		
to	Truck		0	3	1	0	1	0	0	0	0	0	1	0			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		46	238	8	5	123	2	2	6	18	18	12	17	506		
to	Truck		0	4	0	0	6	0	0	0	0	1	0	0			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		40	257	12	5	135	0	3	6	23	10	10	16	529		
to	Truck		0	4	2	0	4	0	0	0	0	2	0	0			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,974	
5:00 PM	Auto	1	44	253	23	4	138	2	3	5	14	18	9	14	539		
to	Truck		0	4	1	0	5	0	0	0	1	1	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,034	
5:15 PM	Auto		62	225	17	2	123	1	4	4	19	15	9	18	502		
to	Truck		0	0	0	0	3	0	0	0	0	0	0	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,076	
5:30 PM	Auto		60	148	12	5	116	2	4	12	14	12	9	11	411		
to	Truck		1	3	1	0	1	0	0	0	0	0	0	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,981	
5:45 PM	Auto		70	167	24	2	134	3	5	3	28	12	8	7	471		
to 6:00 PM	Truck		0	2	1	0	2	0	0	0	2	1	0	0		1 000	
	Bus		0	0	0	0	0	0	0	0	0	0	0	0		1,923	
	our Volume	` ,	237	802	79	13	522	8	16	24	78	59	35	50	1,923		
	(by appro	•		1,118			543			118			144				
	lour Factor	` '		0.86			0.91			0.78			0.86				
1	Total Autos	3		1,105			532			115			142				
Т	otal Trucks	s		13			11			3			2				
Т	Total Buses	s		0			0			0			0				
	% Auto			98.8%			98.0%			97.5%			98.6%				
% H	leavy Vehic	eles		1.2%			2.0%			2.5%			1.4%				
(Tru	ıcks & Bus	es)															

PROJECT: CDC Roybal Campus EIS
LOCATION: Clifton Road @ Gatewood Road

TIME PERIOD: PI

TIME	VEHICLE	"1" AT START	С	lifton Roa (NB)	ad	С	lifton Roa (SB)	ad	Gat	ewood F	Road	Gat	ewood R	Road	15-MIN.	HOURLY	HIGHEST
PERIOD	CLASS.	OF PEAK	L	Т	R	L	Т	R	L	Т	R	L	Т	R	VOLUME	VOLUME	VOLUME
4:00 PM	Auto		2	198	15	3	224	1	2	1	1	46	0	11	521		
to	Truck		0	5	1	1	8	0	0	0	0	1	0	1			
4:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:15 PM	Auto		1	183	18	1	223	1	1	0	4	18	2	9	479		
to	Truck		0	7	3	0	6	0	0	0	0	0	0	2			
4:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:30 PM	Auto		5	158	17	4	249	5	2	3	5	27	0	18	509		
to	Truck		0	5	1	0	9	0	0	0	0	0	0	1			
4:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0			
4:45 PM	Auto		3	203	17	5	232	0	3	0	6	35	1	12	536		
to	Truck		0	8	0	0	9	0	0	0	0	0	0	2			
5:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,045	
5:00 PM	Auto	1	4	200	23	2	289	5	2	1	12	24	0	12	583		
to	Truck		0	2	0	0	6	0	0	0	0	1	0	0			
5:15 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,107	
5:15 PM	Auto		3	193	23	6	283	3	1	0	9	37	1	9	584		
to	Truck		1	8	1	0	5	0	0	0	1	0	0	0			
5:30 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,212	
5:30 PM	Auto		2	188	17	9	309	3	4	2	8	40	0	9	604		
to	Truck		0	6	0	0	6	0	0	0	0	1	0	0			
5:45 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,307	
5:45 PM	Auto		3	217	27	11	267	3	3	0	3	28	0	7	584		
to	Truck		0	7	0	0	7	0	0	0	0	1	0	0		0.055	
6:00 PM	Bus		0	0	0	0	0	0	0	0	0	0	0	0		2,355	
	our Volume	` ′	13	821	91	28	1,172	14	10	3	33	132	1	37	2,355		
	(by appro			925			1,214			46			170				
Peak H	our Factor	(PHF)		0.91			0.93			0.77			0.85				
1	Total Autos	•		900			1,190			45			167				
Т	otal Trucks	s		25			24			1			3				
Т	otal Buses	;		0			0			0			0				
	% Auto			97.3%			98.0%			97.8%			98.2%		1		
% H	eavy Vehic	eles		2.7%			2.0%			2.2%			1.8%				
(Tru	ıcks & Bus	es)															

Appendix C Air Quality

Parking Deck, Running and Idling Emission Rates, CDC Employee Fleet

						Unit Emission	Fleet	Fleet Emission	Bulk Emission
Pollutant	Temperature	Year	MPH	Fuel	Vehicle Type	Rate	Mix	Rate	Rate
					Motorcycle	15.54	0.30%	0.0466	2.46
			15	Gasoline	Passenger Car	3.34	88.09%	2.9394	3.46 grams/mile
Carbon	Under 70	2025			Passenger Truck	4.22	11.29%	0.4765	grains/inic
Monoxide	Officer 70	2023			Motorcycle	112.01	0.30%	0.3360	5.85
			0	Gasoline	Passenger Car	4.13	88.09%	3.6374	grams/vehicle
					Passenger Truck	16.53	11.29%	1.8665	hour

Parking Deck, Vehicle Start Emission Rates, CDC Employee Fleet

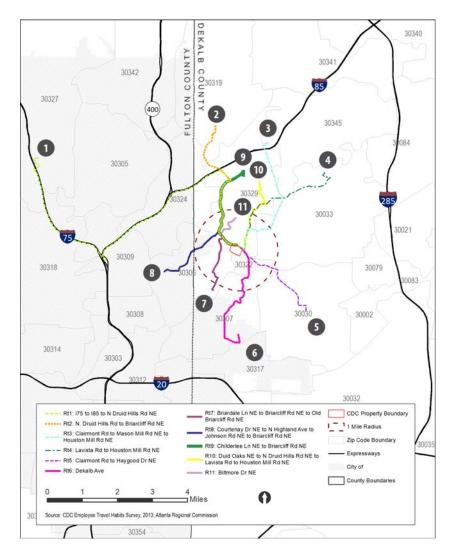
Pollutant	Temperature	Year	Fuel	Vehicle Type	Fleet Mix	Hourly Emission Rate	Bulk Emission Rate (tons/hour)
Carbon				Motorcycle	0.30%	69	
Monoxide	60			Passenger Car	88.09%	23,023	0.0278
				Passenger Truck	11.29%	4,694	
Carbon				Motorcycle	0.30%	3,454	
Dioxide	90			Passenger Car	88.09%	280,326	0.3852
Equivalent		2025	Gasoline	Passenger Truck	11.29%	101,385	
Ovides of		2023	Gasonne	Motorcycle	0.30%	3	
Oxides of Nitrogen	90			Passenger Car	88.09%	599	0.0007
Mitrogen				Passenger Truck	11.29%	119	
Volatile				Motorcycle	0.30%	14	
Organic	90			Passenger Car	88.09%	1,130	0.0013
Compounds				Passenger Truck	11.29%	135	

Regional Commutes, Running Emission Rates, CDC Employee Fleet

riogional con			 	 	 			l		
						Unit		Fleet		
						Emission	Fleet	Emission	_	k Emission
Pollutant	Temperature	Year	MPH	Fuel	Vehicle Type	Rate	Mix	Rate	Rate (grams/mile)
				CNG	Transit Bus	4.00	2.16%	0.0863		
				Diesel	Light Commercial Truck	3.31	4.32%	0.1430		
			35		Motorcycle	0.52	0.43%	0.0022	0.63	
				Gasoline	Passenger Car	0.38	83.52%	0.3139		
		2012			Passenger Truck	0.92	9.57%	0.0879		0.62
		2012		CNG	Transit Bus	4.49	2.16%	0.0970		0.02
				Diesel	Light Commercial Truck	2.55	4.32%	0.1103		
			55		Motorcycle	0.67	0.43%	0.0029	0.61	
				Gasoline	Passenger Car	0.37	83.52%	0.3130		
Oxides of	90				Passenger Truck	0.96	9.57%	0.0915		
Nitrogen	90			CNG	Transit Bus	3.39	2.16%	0.0731		
				Diesel	Light Commercial Truck	1.09	4.32%	0.0469		
			35		Motorcycle	0.45	0.43%	0.0020	0.25	
				Gasoline	Passenger Car	0.12	83.52%	0.1027		
		2025			Passenger Truck	0.25	9.57%	0.0239		0.35
		2025		CNG	Transit Bus	3.83	2.16%	0.0827		0.25
				Diesel	Light Commercial Truck	0.81	4.32%	0.0352		
			55		Motorcycle	0.59	0.43%	0.0025	0.25	
				Gasoline	Passenger Car	0.13	83.52%	0.1068		
					Passenger Truck	0.27	9.57%	0.0258		
					Motorcycle	0.45	0.30%	0.0014		
			35		Passenger Car	0.12	88.09%	0.1083	0.14	
Oxides of	22	2025			Passenger Truck	0.25	11.29%	0.0281		0.44
Nitrogen	90	2025		Gasoline	Motorcycle	0.59	0.30%	0.0018		0.14
			55		Passenger Car	0.13	88.09%	0.1126	0.14	
					Passenger Truck	0.27	11.29%	0.0305		

Pollutant	Temperature	Year	MPH	Fuel	Vehicle Type	Unit Emission Rate	Fleet Mix	Fleet Emission Rate		k Emission (grams/mile)
				Diesel	Light Commercial Truck	0.53	4.32%	0.0229		
			35		Motorcycle	È ₩o.	0.43%	0.0066	0.23	
\/alatila			33	Gasoline	Passenger Car	0.20	83.52%	0.1678	0.23	
Volatile Organic		2012			Passenger Truck	0.36	9.57%	0.0342		0.20
Compounds		2012		Diesel	Light Commercial Truck	0.41	4.32%	0.0176		0.20
oopouao			55		Motorcycle	1.20	0.43%	0.0052	0.18	
))	Gasoline	Passenger Car	0.15	83.52%	0.1292	0.16	
					Passenger Truck	0.27	9.57%	0.0260		
				Diesel	Light Commercial Truck	0.08	4.32%	0.0034		
			35		Motorcycle	1.19	0.43%	0.0051	0.10	
				Gasoline	Passenger Car	0.09	83.52%	0.0792	0.10	
					Passenger Truck	0.12	9.57%	0.0111		0.09
				Diesel	Light Commercial Truck	0.06	4.32%	0.0026		grams/mile
\/alatila			55		Motorcycle	0.90	0.43%	0.0039	0.08	
Volatile Organic	90	2025		Gasoline	Passenger Car	0.08	83.52%	0.0658	0.00	
Compounds	30	2023			Passenger Truck	0.09	9.57%	0.0085		
					Motorcycle	1.19	0.30%	0.0036		
			35		Passenger Car	0.09	88.09%	0.0835	0.10	
				Gasoline	Passenger Truck	0.12	11.29%	0.0131		0.09
				Gasonne	Motorcycle	0.90	0.30%	0.0027		0.03
			55		Passenger Car	0.08	88.09%	0.0694	0.08	
					Passenger Truck	0.09	11.29%	0.0100		

Local Intersections, Idle and Running Emission Rates, GAEPD Vehicle Fleet (used in regional conformity analysis)


						Unit Emission	Fleet	Fleet Emission	Bulk Emission
Pollutant	Temperature	Year	MPH	Fuel	Vehicle Type	Rate	Mix	Rate	Rate
	1,000			Gasoline	Transit Bus	17.79	0.02%	0.0035	
					Combination Long-haul Truck	1.05	0.36%	0.0038	
					Combination Short-haul Truck	0.98	0.64%	0.0063	
					Intercity Bus	0.50	0.03%	0.0002	
					Light Commercial Truck	0.80	10.09%	0.0802	
				Diesel	Motor Home	0.78	0.13%	0.0010	2.42
			35		Refuse Truck	0.88	0.04%	0.0003	2.42 grams/mile
					School Bus	0.41	0.33%	0.0014	granns/nnie
					Single Unit Long-haul Truck	0.70	0.09%	0.0006	
					Single Unit Short-haul Truck	0.78	1.27%	0.0099	
					Motorcycle	12.67	2.10%	0.2659	
				Gasoline	Passenger Car	2.10	54.01%	1.1328	
Carbon	Under 70	2025			Passenger Truck	2.95	30.88%	0.9117	
Monoxide	Officer 70	2023		Gasoline	Transit Bus	19.11	0.02%	0.0038	
					Combination Long-haul Truck	8.13	0.36%	0.0293	
					Combination Short-haul Truck	7.87	0.64%	0.0504	
					Intercity Bus	5.29	0.03%	0.0017	
					Light Commercial Truck	9.90	10.09%	0.9990	
				Diesel	Motor Home	7.77	0.13%	0.0099	10.91
			0		Refuse Truck	7.54	0.04%	0.0030	grams/vehicle
					School Bus	6.14	0.33%	0.0206	hour
					Single Unit Long-haul Truck	7.29	0.09%	0.0065	
					Single Unit Short-haul Truck	7.80	1.27%	0.0991	
					Motorcycle	112.01	2.10%	2.3512	
				Gasoline	Passenger Car	4.13	54.01%	2.2304	
					Passenger Truck	16.53	30.88%	5.1054	

Facility Wide Emissions Summary

		Total M	Aaximum Po		issions ⁸	
Group Description	NO _X	SO_2	CO	PM	VOC	HAP ⁹
Boilers ^{1,2}	88.21	290.42	106.51	15.23	5.12	1.76
Generators ^{3,4,5,6}	49.68	8.01	18.32	1.81	2.21	0.10
Incinerators ⁷	7.86	1.74	2.42	0.98	0.17	0.35
Total	145.75	300.17	127.26	18.01	7.50	2.21
Title V Major Source Threshold	25	100	100	100	25	25
Title V Major Source?	Yes	Yes	Yes	No	No	No

- 1. Includes BL02, BL03, BL04, BL07, BL08, BL09 and BL10.
- 2. Total NOx emissions from BL04, BL07, BL10 are limited to 16 tpy (10 tpy for Boilers 4, 7 combined and 6 tpy for Boiler 10 only).
- 3. Includes all generators from CG01 CG17.
- 4. Total NOx emissions from CG03 CG06 are limited to 15 tpy.
- 5. Total NOx emissions from CG10 CG14 are limited to 9 tpy.
- 6. Total NOx emissions from CG15 CG17 are limited to 6 tpy.
- 7. Includes INC1, INC2 and INC3.
- $8. \ The \ facility \ wide \ emissions \ do \ not \ include \ emissions \ from \ insignificant \ emission \ sources.$
- 9. CDC is a minor source of HAP, since the total HAP (and the single HAP) is below the 25 tpy (and 10 tpy) threshold.

Source: Title V Operating Permit Renewal Application, Trinity Consultants, 2008

Regional VMT, 2013 Commute Patterns

			# of Employees		
	Distance	% on		No	
Commute	(miles)	Route	Existing	Build	Build
Route 1	11.6	14%	768	893	984
Route 2	4.5	6%	324	377	415
Route 3	4.4	11%	606	704	776
Route 4	4.4	8%	450	523	576
Route 5	3.2	19%	1026	1193	1315
Route 6	3.9	14%	732	851	938
Route 7	2.3	2%	108	126	139
Route 8	2.5	7%	378	439	484
Route 9	3.0	2%	132	153	169
Route 10	2.7	4%	222	258	284
Route 11	1.4	11%	564	656	723
	56,040	61,755			

Appendix D Noise

Site Map	* p	¥		
-bird tu	ects but tra	efficienstaty loude	-ir	
- Both Es	B/WB bucked	up to idle, month	r pealed during the	e times
+ Traffic on	Bilthore wa	a very slow and us ble, therefore not a	welly queued, Ace	selector est
- Site 18 1	next to res	ident's parch		
- Stell	higher in ekul	iton to road, and	I separed by die	4
	j K			d.

Location please no	: Mille	edge R	obstructi	Hon ions	Vehicle Speed:	laries	Surface Type:		Tempero		Wind:	a property in the party.	
Date	Time Start	Duration		L10	L50	L90	Lmax.	Record #	NB/SB EB/WB	cars	light trucks	heavy trucks	M
41	Cim	- 6	(n 1	63	10	54	69.8)	EB	334	3	5	30
7/2	J. JEAN	20m	60,6	62	60	>4	61.8	1	WB	98	9	3	30
4	1 54	20	(701)	5/	(25	406	201		ES	147	2		30
185	0-12 blu	Mm (M	294	pyr,	1/2	180	70.1	12	WB	214	7	7	30
							=						
	·												

Directions: II/> (start/pause button), record for 20 minutes for mobile, (10 minutes for stationary); at 20 minute mark, hit pause II/>, then scroll the parameters and write them down in the above chart; then hit data and scroll through parameter to store - OK - write down record # above; then reset or ; and you're ready to start a new site.

Site Map - consistent bird-tweets, accounts for +3 dBA - EB traffic slower than WB
. EB stopped every few minutes. Nonitor paused during these times,
. WB consistant free flow
HT we usually loud bures - Monitor at lower elevation, 5-10ft - Site has nearly descenier and table/chair Vehicle VAVIES Internations Location: / 1/6 Surface Temperature: Wind: IS 50 Speed: Type: please note any line-ot-sight obstructions NB/SB Time Duration Lmox Record cars light heavy EB/WB MA Start trucks trucks 35 20m 69.7 20 M

Directions: II/> (start/pause button), record for 20 minutes for mobile, (10 minutes for stationary); at 20 minute mark, hit pause II/>, then scroll the parameters and write them down in the above chart; then hit data and scroll through parameter to store - OK - write down record # above; then reset o?; and you're ready to start a new site.

Site Map

95
- 170 free flow, 5% not rounted

shuses counted as ItT

site next to hotel pool, negligible bird robe

planes everhead, pawed monitor

planes everhead, pawed monitor

planes everhead, pawed monitor

planes everhead, pawed monitor

Location please no	i: Emor he any lin	y Irn	pool obstructi	ens	Vehicle Speed:		Surface Type:	300 A	Temper		Wind:	fs	
Date	Time Start	Duration	Leq	L10	L50	L90	Lmax	Record #	NB/SB EB/WB	cars	light	heavy trucks	
1410	000	22	CLF	58.5	45		en 2	1	FI	263	9	1	25-
7/3	9-20m	ddm	70-1	¿ X ">	7 2	57	BO.7	b	WB	157	12	2	30-
412	5 4.0	20m	Call	C9	CL	05	221	9	EB	273	1	2	220
:13	SAM	2000	> 7.7	21	J 0	- /,-	72.0	/	WB	331	8	2	54
İ											-		

Directions: II/ \blacktriangleright (start/pause button), record for 20 minutes for mobile, (10 minutes for stationary); at 20 minute mark, hit pause II/ \blacktriangleright , then scroll the parameters and write them down in the above chart; then hit data and scroll through parameter to store - OK - write down record # above; then reset \overrightarrow{oe} ; and you're ready to start a new site.

Appendix E Memorandum of Agreement

MEMORANDUM OF AGREEMENT

BETWEEN THE CENTERS FOR DISEASE CONTROL AND PREVENTION

AND THE

GEORGIA STATE HISTORIC PRESERVATION OFFICER

REGARDING

HISTORIC DISTRICT, EDWARD G. ROYBAL CAMPUS, ATLANTA, GEORGIA

WHEREAS, THE CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC) proposes an "Undertaking" to modernize and replace through new construction their office, laboratory, and research facilities at the Edward R. Roybal Campus, located at 1600 Clifton Road to meet the CDC's security and safety criteria developed after the Oklahoma City Bombing in 1995 and the terrorist attacks of September 11, 2001 as described in the Roybal Campus Master Plan;

WHEREAS, the CDC is a federal agency that follows the requirements set forth in the National Historic Preservation Act (NHPA); and

WHEREAS, the Undertaking will consist of the staged demolition of five historic properties (Buildings 1 Main, 1 East, 1 South, 3, 6) joined as one building and situated at 1600 Clifton Road; and

WHEREAS, the Undertaking's area of potential effect (APE) has been defined as the tract containing these buildings and their immediate surrounds (Attachment A) and their National Register qualifying characteristics; and

WHEREAS, the CDC has determined that the Undertaking will have an adverse effect on properties that were identified by a Cultural Resources Assessment conducted in 2008 that recommended them as eligible for listing in the National Register of Historic Places as a historic district (Buildings 1 Main, 1 East, 1 South, 3, 6, and 10); and

WHEREAS, the Georgia Historic Preservation Division (GA SHPO) has concurred with that eligibility recommendation; and

WHEREAS, the CDC has consulted with the GA SHPO pursuant to 36 C.F.R. part 800, of the regulations implementing Section 106 of the National Historic Preservation Act (16 U.S.C. § 470f) to resolve the adverse effects of the Undertaking on the historic properties; and

WHEREAS, in accordance with 36 C.F.R. § 800.6(a)(1), the CDC has notified the

Advisory Council on Historic Preservation (ACHP) of its adverse effect determination with specified documentation and the ACHP has chosen not to participate in the consultation pursuant to 36 CFR § 800.6(a)(1)(iii); and

NOW, THEREFORE, the CDC and the GA SHPO agree that the Undertaking shall be implemented in accordance with the following stipulations in order to take into account the effect of the Undertaking on historic properties.

STIPULATIONS

The CDC shall ensure that the following actions take place to mitigate adverse effects to the historic district through documentation and the development of two public outreach products.

I. DOCUMENTATION

Documentation Photography, as-built plans, and a historical narrative will be professionally prepared by a historian that meets the Secretary of Interior's professional standards (36 CFR Part 61) and compiled into a documentation portfolio.

- a) A draft copy of the documentation shall be submitted to the SHPO for review and comment before the submission of the final documentation. Five copies will be prepared for distribution to the Georgia Historic Preservation Division, Georgia Archives and History, Atlanta History Center, the DeKalb Historical Society, the CDC Library respectively. Two copies will contain original images; one copy will be submitted to GA SHPO and one copy will be retained by the CDC.
- b) Original as-built drawings for Buildings 1 Main, 1 East, 1 South, 3, 6, and 10 and historic maps showing the establishment of the campus will become part of the CDC's Library's permanent collection. In addition, as-built drawings for other buildings that were part of the original CDC campus but were demolished in the past will be retained in the archived collection.
- c) Digital photographs will be printed to National Register of Historic Places standards and will be appropriately labeled for submission. A cd with the images will also be submitted.
- d) Historical narrative will be fully referenced and will be printed on archival paper. A pdf document will also be submitted.

II. PUBLIC INTERPRETATION

a) Public interpretation through signage or historic markers will be integrated into the sidewalk and security/barrier wall on Clifton Road to highlight the history of the CDC and the significance of its early buildings. CDC will develop an interpretive plan and

consult with SHPO prior to implementation.

b) A webpage/site will be developed that highlights the history of the CDC. This public outreach vehicle will feature oral history, historic photography and a narrative about the CDC and its historical mission(s).

III. LATE DISCOVERY

As the project area was not surveyed, there is the potential for previously unknown cultural materials to be revealed by ground disturbance. In the event of such a discovery, construction in that area shall cease, the SHPO shall be notified, and an appropriate treatment of these materials shall be determined.

IV. DURATION

This MOA shall be null and void if its terms are not carried out within five (5) years from the date of its execution. Prior to such time, the CDC may consult with the other signatory to reconsider the terms of the MOA and amend it in accordance with Stipulation VII below.

V. MONITORING AND REPORTING

Six months following the execution of this MOA until it expires or is terminated, the CDC shall provide the GA SHPO a summary report detailing work undertaken pursuant to its terms. The report shall include any scheduling changes proposed, any problems encountered, and any disputes and objections received in the CDC's efforts to carry out the terms of this MOA.

VI. DISPUTE RESOLUTION

Should the GA SHPO object to the manner in which the terms of this MOA are implemented, the CDC shall consult with the GA SHPO to resolve the objection. If the CDC determines that such objection cannot be resolved, the CDC shall:

A. Forward all documentation relevant to the dispute, including the CDC's proposed resolution, to the ACHP. The ACHP shall provide the CDC with its written advice on the resolution of the objection within thirty (30) days of receiving adequate documentation. Prior to reaching a final decision on the dispute, the CDC shall prepare a written response that takes into account any timely advice or comments regarding the dispute from the ACHP, and the GA SHPO, and will provide each with a copy of this written response. The CDC shall then proceed according to its final decision.

B. If the ACHP does not provide its advice regarding the dispute within the thirty (30) day time period, the CDC may make a final decision on the dispute and proceed accordingly. Prior to reaching such a final decision, the CDC shall prepare a written response that takes into account any timely comments regarding the dispute from the GA

SHPO to the MOA, and provide them and the ACHP with a copy of such written response.

C. Carry out all other actions subject to the terms of this MOA that are not the subject of the dispute without change.

VII. AMENDMENTS

This MOA may be amended when such an amendment is agreed to in writing by all signatories. The amendment shall be effective on the date a copy, signed by all of the signatories, is filed with the ACHP.

VIII. GOVERNING LAW

This agreement shall be governed by applicable federal law.

IX. FUNDING

In general, each signatory to this MOA is expected to bear the costs of its participation in this Undertaking. Nothing in this MOA shall obligate the Department of Health and Human Services, CDC or GA SHPO to any current or future expenditure of resources in advance of the availability of appropriations from Congress or the Georgia state legislature.

X. LIABILITY

Each signatory to this MOA will be responsible for its own acts and the results thereof and shall not be responsible for the acts of the other party and the results thereof. Each signatory therefore agrees that it will assume all risk and liability to itself, its agents or employees, for any injury to persons or property resulting in any manner from the conduct of its own operations and the operations of its agents or employees under this MOA, and for any loss, cost, damage, or expense resulting at any time from any and all causes due to any act or acts, negligence, or the failure to exercise proper precautions, of or by itself or its agents or its own employees, while conducting activities under and pursuant to this agreement. CDC's liability shall be governed by the provisions of the Federal Tort Claims Act [28 U.S.C. 2671-80 (1976)].

XI. ENTIRETY

This MOA represents the entire agreement of the signatories with respect to the subject matter hereof, and supersedes all prior and/or contemporaneous agreements or understandings, written or oral, with respect to the subject matter of this MOU.

XII. TERMINATION

If any signatory to this MOA determines that its terms shall not or cannot be carried out, that

party shall immediately consult with the other parties to attempt to develop an amendment. above. If within thirty (30) days (or another time period agreed to by all signatories) an amendment cannot be reached, any signatory may terminate the MOA upon written notification to the other signatories.

Once the MOA is terminated, and prior to work continuing on the Undertaking, the CDC must either (a) execute an MOA pursuant to 36 CFR § 800.6 or (b) request, take into account, and respond to, comments of the ACHP under 36 CFR § 800.7. The CDC shall notify the signatories as to the course of action it will pursue.

Execution of this MOA by the CDC and the GA SHPO and implementation of its terms evidence that the CDC has taken into account the effects of this Undertaking on historic properties and afforded the ACHP an opportunity to comment.

This MOA is considered terminated upon the completion and acceptance of all terms and stipulations set forth herein.

SIGNATORIES:

Centers for Disease Control and Prevention

George F. Chandler, Director Buildings and Facilities Office

Georgia State Historic Preservation Officer

Dr. Raymond Luce, State Historic Preservation Officer

Appendix F Agency Coordination Letters

MARK WILLIAMS COMMISSIONER

DAN FORSTER DIRECTOR

April 10, 2013

Roger Bledsoe Environmental Scientist Jacobs Engineering Group, Inc. 6801 Governors Lake Parkway Bldg. 200 Norcross, GA 30071

Subject: Known occurrences of natural communities, plants and animals of highest priority conservation status on or near HHS/CDC Edward R. Roybal Campus Master Plan EIS, DeKalb County, Georgia

Dear Mr. Bledsoe:

This is in response to your request of February 27, 2013. According to our records, within a three-mile radius of the project site, there are the following Natural Heritage Database occurrences:

GA Cambarus howardi (Chattahoochee Crayfish) [HISTORIC] on site in Peachtree Creek and Tributaries

Panax quinquefolius (American Ginseng) on site [-84.326415, 33.802253]

Pd mesic broadleaf decid. forest (Piedmont Mesic Hardwood Forest) approx. 1.5 mi. S of site

- GA Schisandra glabra (Bay Star-vine) on site [-84.326415, 33.802253]
- GA Schisandra glabra (Bay Star-vine) on site [-84.324473, 33.795072]
- GA Schisandra glabra (Bay Star-vine) approx. 1.5 mi. S of site
- GA Schisandra glabra (Bay Star-vine) approx. 1.5 mi. W of site
- GA *Schisandra glabra* (Bay Star-vine) approx. 2.5 mi. W of site Greenspace [Fulton County] approx. 1.5 mi. W of site Greenspace [DeKalb County] approx. 3.0 mi. SE of site
 - Johns Sanctuary [Atlanta Audubon Society] approx. 1.5 mi. N of site

^{*} Entries above proceeded by "US" indicates species with federal status (Protected, Candidate or Partial Status). Species that are federally protected in Georgia are also state protected; "GA" indicates Georgia protected species.

Recommendations:

We have records of three high priority species within the potential project area. (see bold above). The Chattahoochee Crayfish record is historic and is not likely to be found on site. However, the records of Ginseng and Bay Star-vine are current and surveys should be completed to identify these and any other high priority species before planning is completed. In addition to these species, we are concerned about stream habitats that could be impacted by construction activities. In order to protect aquatic habitats and water quality, we recommend that all machinery be kept out of streams during construction. We urge you to use stringent erosion control practices during construction activities. Further, we strongly advocate leaving vegetation intact within 100 feet of streams wherever possible, which will reduce inputs of sediments, assist with maintaining riverbank integrity, and provide shade and habitat for aquatic species. We realize that some trees may have to be removed, but recommend that shrubs and ground vegetation be left in place.

Disclaimer:

Please keep in mind the limitations of our database. The data collected by the Nongame Conservation Section comes from a variety of sources, including museum and herbarium records, literature, and reports from individuals and organizations, as well as field surveys by our staff biologists. In most cases the information is not the result of a recent on-site survey by our staff. Many areas of Georgia have never been surveyed thoroughly. Therefore, the Nongame Conservation Section can only occasionally provide definitive information on the presence or absence of rare species on a given site. Our files are updated constantly as new information is received. Thus, information provided by our program represents the existing data in our files at the time of the request and should not be considered a final statement on the species or area under consideration.

If you know of populations of highest priority species that are not in our database, please fill out the appropriate data collection form and send it to our office. Forms can be obtained through our web site (http://www.georgiawildlife.com/node/1376) or by contacting our office. If I can be of further assistance, please let me know.

Sincerely,

Katrina Morris

Tuna Morris

Environmental Review Coordinator

Data Available on the Nongame Conservation Section Website

- Georgia protected plant and animal profiles are available on our website. These accounts cover basics like
 descriptions and life history, as well as threats, management recommendations and conservation status.
 Visit http://www.georgiawildlife.com/node/2721.
- Rare species and natural community information can be viewed by Quarter Quad, County and HUC8 Watershed. To access this information, please visit our GA Rare Species and Natural Community Information page at: http://www.georgiawildlife.com/conservation/species-of-concern?cat=conservation.
- Downloadable files of rare species and natural community data by quarter quad and county are also available. They can be downloaded from: http://www.georgiawildlife.com/node/1370.

Appendix G

Procedures for Handling & Disposing of Infectious Wastes at the Roybal Campus

Biological Waste Management and Public Safety

1. CDC Personnel and Public Safety

The CDC Roybal Campus includes laboratory research activities which involve working with infectious microorganisms and laboratory animals. Depending upon the activity and the type of infectious agent being studied, certain safety procedures, equipment, and facilities have been provided to ensure the safety of CDC personnel and the surrounding environment.

The following discussions describe the laboratories at the Roybal Campus and the level of precaution or safety used for each. In general, CDC's laboratory safety program is founded on:

- trained laboratory supervisors;
- adherence to strict laboratory protocols specified in both standardized and customized (labspecific) programs and procedures manuals;
- complete employee training programs; and,
- strict limitations on individuals provided access to specific laboratories.

Basic biosafety principles, terminology, concepts, and a description of existing laboratory conditions are provided as a basis for evaluating potential impacts in Chapter 3.11. Because proper handling and disposal of infectious waste is a key factor for the ensuring safety of both CDC personnel and the general public, a description of procedures used for handling and disposing of infectious wastes at the CDC is also provided.

2. Biosafety Principles and Terminology

To ensure the safety of CDC personnel and the surrounding community, CDC conducts all laboratory research and related activities in strict accordance with biosafety guidelines for microbiological and biomedical laboratory operations, as provided in "Biosafety in Microbiological and Biomedical Laboratories 5th Edition" (HHS publication No. (CDC) 21-1112, December 2009). This "guidance" document was prepared by the Centers for Disease Control and Prevention and the National Institutes of Health. Key features of the standards are summarized below.

The primary principles of biosafety are containment and risk assessment:

"The fundamentals of containment include the microbiological practices, safety equipment, and facility safeguards that protect laboratory workers, the environment, and the public from infectious microorganisms that are handled and stored in the laboratory. Risk assessment is the process that enables the appropriate selection of microbiological practices, safety equipment and facility safeguards that can prevent laboratory associated infections (LAI)."

¹ HHS/CDC. *Biosafety in Microbiological and Biomedical Laboratories 5th Edition*. HHS publication No. (CDC) 21-1112, December 2009.

One fundamental objective of biosafety is containment both primary and secondary. As referred to in the guidelines, containment is used to describe safe methods for managing infectious agents in the laboratory environment where they are being handled or used. Primary containment relates to the protection of laboratory personnel from exposure to infectious agents, whereas secondary containment relates to the protection of the external environment (i.e., surrounding community, non-lab personnel, etc.). Primary containment is achieved through the use of standard microbiological practices and techniques, and the use of appropriate safety equipment (primary barriers). Secondary containment is achieved through a combination of facility design (secondary barriers) and operational practices.

Primary barriers are designed to protect laboratory personnel working with infectious agents, and therefore indirectly protect the surrounding environment. Primary barriers can include such items as Biosafety Cabinets (BSCs), personal protective equipment (gloves, goggles, respirators, face shields etc.), and other laboratory equipment such as safety centrifuge cups. Usually a combination of BSCs and personal protective gear is used to obtain a desired level of protection.

Secondary barriers are part of the facility design and are primarily intended to protect the surrounding environment. Secondary barriers may include controlled access and ventilation systems to ensure directional air flow (i.e. into the laboratory and not out), air treatment systems for exhaust air, and anterooms at the laboratory entrances.

Guidelines for activities involving infectious agents, and/or activities which experimentally or naturally infected vertebrate test animals are provided in the standards. These guidelines are based on four levels of containment referred to as Biosafety Levels (BSLs) for infectious agent activities, and Animal Biosafety Levels (ABSLs) for activities involving infected vertebrate animals. The four biosafety levels are characterized in Table 1 (this table also includes a definition of "infectious wastes").

Required safety measures for each BSL and ABSL increase with each level, with level four being the highest. A summary of key requirements for both BSLs and ABSLs are provided in Tables 2 and 3, respectively.

Table 1. Key Term and Definitions

Biosafety Level 1

Biosafety Level 1 practices, safety equipment, and facilities are appropriate for undergraduate and secondary education training and teaching laboratories, and for other facilities in which work is done with defined and characterized strains of viable microorganisms not known to cause disease in healthy adult humans. *Bacillus subtilis, Nigeria gruberi,* infectious canine hepatitis virus and exempt organisms under the NIH Guidelines are representative of those microorganisms meeting these criteria. Many agents not ordinarily associated with disease processes in humans are, however, opportunistic pathogens and may cause infections in young, aged, and immunodeficient or immunosuppressed individuals. Vaccine strains which have undergone multiple *in vivo* passages should not be considered avirulent simply because they are vaccine strains.

Biosafety level 1 represents a basic level of containment that relies on standard microbiological practices with no special primary or secondary barriers recommended, other than a sink for hand washing.

Biosafety level 2 practices, equipment, and facility design and construction are applicable to clinical, diagnostic, teaching and other facilities in which work is done with the broad spectrum of indigenous moderate-risk agents present in the community and associated with human diseases of varying severity. With good microbiological techniques, these agents can be used safely in activities conducted on the open bench, provided the potential for producing splashes or aerosols is low. Hepatitis B virus, the Salmonellae, and *Toxoplasma* are representative of the microorganism assigned to this containment level.

Biosafety Level 2

Biosafety level 2 is appropriate when work is done with any human-derived blood, body fluids, tissues, or primary human cell lines where the presence of an infectious agent may be unknown. (Laboratory personnel working with human-derived materials should refer to the OSHA *Bloodborne Pathogen Standard* for specific required precautions).

Primary hazards to personnel working with these agents relate to accidental percutaneous or mucous membrane exposures, or ingestion of infectious materials. Extreme caution should be taken with contaminated needles or sharp instruments. Even though organisms routinely manipulated at BSL2 are not known to be transmissible by the aerosol route, procedures with aerosol or high splash potential that may increase the risk of such personnel exposure must be conducted in primary containment equipment, or devices such as BSC or safety centrifuge cups. Personal protective equipment should be used as appropriate, such as splash shields, face protection, gowns, and gloves.

Secondary barriers such as hand washing and waste decontamination facilities must be available to reduce potential environmental contamination.

Table. 1 Key terms and definitions (continued)						
Biosafety Level 3	Biosafety Level 3 practices, safety equipment, and facility design and construction are applicable to clinical, diagnostic, teaching, research, or production facilities in which work is done with indigenous or exotic agents with a potential for respiratory transmission, and which may cause serious and potentially lethal infection. <i>Mycobacterium tuberculosis,</i> St. Louis encephalitis, and <i>Coxiella burnetii</i> are representative of microorganisms assigned to this level. Primary hazards to personnel working with these agents relate to autoinoculation, ingestion, and exposure to potentially infectious aerosols. At Biosafety Level 3, more emphasis is placed on primary and secondary barriers to protect personnel in contiguous areas, the community, and the environment from exposure to potentially infectious aerosols. For example, all laboratory manipulations should be performed in a BSC or other enclosed equipment, such as a gastight aerosol generation chamber. Secondary barriers for this level include controlled access to the laboratory and ventilation requirements that minimizes the release of infectious aerosols from the laboratory.					
	Biosafety Level 4 practices, safety equipment, and facility design and construction are applicable for work with dangerous and exotic agents which pose a high individual risk of life-threatening disease, which may be transmitted via the aerosol route, and for which there is no available vaccine or therapy. Agents with a close or identical antigenic relationship to Biosafety Level 4 agents should also be handled at this level. When sufficient data are obtained, work with these agents may continue at this level or at a lower level. Viruses such as Marburg or Congo-Crimean hemorrhagic fever are manipulated at Biosafety Level 4. The primary hazards to personnel working with Biosafety Level 4 agents are					
Biosafety Level 4	respiratory exposure to infectious aerosols, mucous membrane or broken skin exposure to infectious droplets, and auto-inoculation. All manipulations of potentially infectious diagnostic materials, isolates, and naturally or experimentally infected animals pose a high risk of exposure and infection to laboratory personnel, the community, and the environment.					
	The laboratory worker's complete isolation against aerosolized infectious materials is accomplished primarily by working in a Class III BSC or a full-body, air-supplied positive-pressure personnel suit. The Biosafety Level 4 facility itself is generally a separate building or completely isolated zone with complex specialized ventilation and waste management systems to prevent the release of viable agents to the environment					
Infectious Waste	Infectious wastes are those wastes containing, or potentially containing pathogens of sufficient virulence and quantity so that the exposure to the waste by a susceptible host could result in the development by that host of a communicable disease.					

Source: HHS/CDC. Biosafety in Microbiological and Biomedical Laboratories 5^{th} Edition.

	Table 2. Summary	of recommended biosafety	/ levels for infectious a	gents (BSLs).
Biosafety Level	Agents	Practices	Safety Equipment (Primary Barriers)	Facilities (Secondary Barriers)
BSL-1	Not known to consistently cause disease in healthy adults	Standard microbiological practices	 No primary barriers required PPE: laboratory coats and gloves; eye; face protection as needed 	Laboratory bench and sink required
BSL-2	Associated with human disease; Routes of transmission include percutaneous injury, ingestion, mucous membrane exposure	BSL-1 practices plus: Limited access Biohazard warning signs "Sharps" precautions Biosafety manual defining any needed waste decontamination or medical surveillance policies	BSCs or other physical containment devices used for all manipulations of agents that cause splashes or aerosols of infectious materials; PPEs; laboratory coats; gloves; face and eye protection as needed	BSL-1 plus: Autoclave available
BSL-3	Indigenous or exotic agents that may cause serious or potentially lethal disease through the inhalation route of exposure	BSL-2 practice plus: Controlled access Decontamination of all waste Decontamination of lab clothing before laundering BSL-2 practice plus: Decontamination of all waste	BCSs or other physical containment devices used for all open manipulations of agents; PPEs: protective lab clothing; gloves; face, eye, and respiratory protection as needed	BSL-2 plus: Physical separation from access corridors Self-closing, double door access Exhausted air not recirculated Negative airflow into laboratory Entry through airlock or anteroom Hand washing sink near laboratory exit
BSL-4	Dangerous/exotic agents posing a high individual risk, aerosoltransmitted laboratory infections that are frequently fatal, for which there are no vaccines or	 BSL-3 practices plus: Clothing change before entering Shower on exit All material decontaminated on exit from facility 	Primary barriers = All procedures conducted in Class III BSCs or Class I or Class II BSCs in combination with full-body, air supplied, positive pressure personnel suit	BSL-3 plus: Separate building or isolated zone Dedicated supply/exhaust vacuum, and decontamination systems Other requirements outlined in text

treatments; agents with close or identical antigenic relationship to an agent requiring ABSL4 until data are available to redesignate this level; or related agents with unknown risk		
transmission		

Source: HHS/CDC. Biosafety in Microbiological and Biomedical Laboratories 5th Edition.

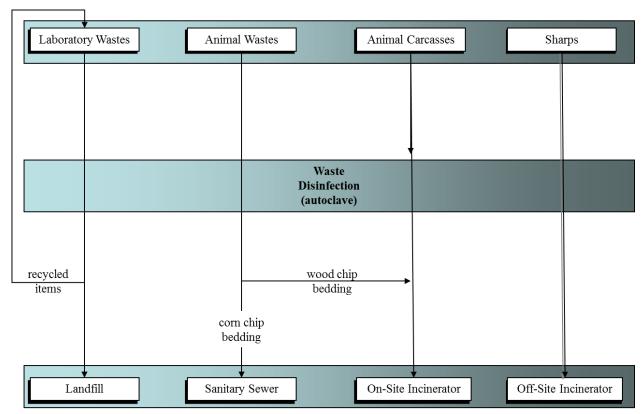
Table 3. Su	Table 3. Summary of recommended biosafety levels for activities which infected vertebrate animals are used (ABSLs).								
Biosafety Level	Agents	Practices	Safety Equipment (Primary Barriers)	Facilities (Secondary Barriers)					
ABSL-1	Not known to consistently cause disease in healthy adults	Standard animal care and management practices, including appropriate medical surveillance programs	 As required for normal care of each species PPEs: laboratory coats, gloves, face, and eye protection as needed 	 Standard animal facility Non recirculation of exhaust air Directional air flow recommended Hand washing sink available 					
ABSL-2	Associated with human disease. Hazard: percutaneous exposure, ingestion, mucous membrane exposure	ABSL-1 practices plus: Limited access Biohazard warning signs "Sharps" precautions Biosafety manual Decontamination of all infectious wastes and animal cages prior to washing	ABSL-1 equipment plus primary barriers: Containment equipment appropriate for all animal species; PPEs: laboratory coats, gloves, face and respiratory protection as needed	ABSL-1 plus: Autoclave available Hand washing sink available Mechanical cage washer recommended Negative airflow into animal and procedure rooms recommended					
ABSL-3	Indigenous or exotic agents that may cause serious or potentially lethal disease through the inhalation route of exposure	ABSL-2 practice plus: Controlled access Decontamination of clothing before laundering Cages decontaminated before bedding removed	ABSL-2, equipment plus: Containment equipment for housing animals and cage dumping activities Class I, II, or III	ABSL-2 facility plus: Physical separation from access corridors Self-closing, double door access Sealed penetrations & windows Autoclave available					

Table 3. Su	Table 3. Summary of recommended biosafety levels for activities which infected vertebrate animals are used (ABSLs).							
Biosafety Level	Agents	Practices	Safety Equipment (Primary Barriers)	Facilities (Secondary Barriers)				
		Disinfectant foot bath as needed	BSCs available for manipulative procedures (inoculation necropsy) that may create infectious aerosols. PPEs: appropriate respiratory protection	 in facility Entry through anteroom or airlock Negative airflow into animal and procedure rooms Hand washing sink near exit of animal or procedure room 				
ABSL-4	Dangerous/exotic agents which pose a high risk, aerosoltransmitted laboratory infections that are frequently fatal, for which there are no vaccines or treatments; agents with close or identical antigenic relationship to an agent requiring ABSL4 until data are available to redesignate this level; or related agents with unknown risk transmission	ABSL-3 practices plus: Entrance through change room where personal clothing is removed and laboratory clothing is put on: shower on exiting Decontaminate all wastes before removal from facility	ABSL-3 equipment plus: • Maximum containment equipment (i.e., Class III BSC or partial containment equipment in combination with full body, airsupplied positive-pressure personnel suit) used for all procedures and activities	ABSL-3 plus: Separate building/isolated zone Dedicated supply exhaust vacuum, and decon systems Other requirements outlined in text				

The guidelines for determining the appropriate BSL for a given laboratory or operation are dependent upon several variables including the virulence, pathogenicity, biological stability, and communicability of the agent involved. The guidelines provide appropriate BSL/ABSL levels and laboratory precautions for specific microorganisms and for various types of agents (i.e. parasitic, fungal, bacterial, rickettsial, viral, or arboviral).

Each laboratory director is responsible for assigning the appropriate BSL and any additional safety precautions. If recommendations for a specific agent are not provided in the guidelines, the assigned BSL/ABSL level and precautions are based on risk assessment.

3. Decontamination and Disposal of Infectious Wastes


Proper handling and disposal of infectious wastes is an integral part of effective containment. Biomedical wastes (BMWs), which include potentially infectious waste, are regulated at the state level. Georgia requirements are listed under the Rules of Georgia Department of Natural Resources, Environmental Protection Division, Solid Waste Management (391-3-4), Biomedical Wastes (392-3-4-15). The CDC Roybal Campus is in full compliance with the 392-3-4-15 requirements.

Infectious wastes generated at CDC are decontaminated by autoclaving prior to disposal. Autoclaving is a process involving exposure to pressurized steam for a period of time in order to destroy microorganisms. Autoclaving is considered one of the most dependable methods for the destruction of all forms of microbial life and is included in the Georgia regulations as one of the acceptable methods for rendering biomedical wastes noninfectious.

The disposal method for decontaminated wastes is dependent upon the waste category and certain physical characteristics. A flow chart depicting the disposal of infectious wastes at CDC is provided in Figure 1: Flow Diagram for Infectious Waste.

Figure 1: Flow Diagram for Infectious Waste

Waste Generation

Waste Disposal

Handling and disposal methods for infectious wastes generated at the Clifton Road Campus are determined by waste category. The four possible waste categories include:

- laboratory wastes (plastics, glass, liquids, paper, latex gloves, and metals);
- sharps (wastes which may inflict punctures or lacerations);
- animal wastes; and,
- animal carcasses.

Laboratory wastes are placed in discards pans that are located in each laboratory. The laboratory staff collects the pans and safely transports them to the autoclave collection rooms located on each floor. Each pan is disinfected in the autoclave and the wastes are subsequently segregated and either recycled or disposed of in a landfill. Wastes to be landfilled are retained in a large bin prior to shipment. Autoclaved pans are cleaned with a disinfectant and inspected prior to being returned to the laboratories.

Because sharps represents a danger to personnel handling the wastes, these wastes are required to be placed in a labeled, leak-resistant, puncture resistant container. Each laboratory station is provided with a sharps container. When the containers are filled they are collected and autoclaved. The sterilized wastes are then segregated and the sharps are picked up by a contractor and transported off-site for incineration. Sharps are not landfilled because they represent a greater risk then other BMWs.

Animal wastes, including bedding material, feces, urine, and food remaining in the animal cage (Davis, 1994), are taken to the autoclave room at the Clifton Road Campus where they are rendered non-infectious by autoclaving. The bedding material is then either incinerated or disposed of in the sanitary sewer. Bedding material that is soft (i.e., corn-cob) is ground up and discharged to the sanitary sewer, while material containing wood chips is incinerated in one of the campus incinerators. Cages that have been autoclaved are supplied with fresh bedding and returned to the laboratories via a "clean" elevator.

Animal carcasses are double-bagged in biowaste bags and autoclaved. After being autoclaved the carcasses are then incinerated.

4. Air Filters

As described above, ventilation systems which ensure directional air flow are used in higher risk labs as secondary barriers. Under normal working conditions, there is a minimal risk of airborne pathogens in laboratory space. However, as a precaution, the CDC uses high-efficiency particulate air (HEPA) filter systems in selected BSL 3 and all BSL4 labs. HEPA filters remove particles 0.3μ in size with 99.97% efficiency or higher. Particles larger or smaller than 0.3μ m are filtered with greater efficiency.

The filters are replaced on regular service intervals. Before removal from the HEPA system, the filters are gassed in-place with vapor phase hydrogen peroxide, and then plastic bagged for transport to incineration or landfill. Periodically the HEPA filters are challenged with an aerosol on an annual basis to ensure that there are no leaks.

Appendix H Greenhouse Gases and Sustainability

Existing Conditions, 2012, VMT Estimate by Vehicle Type

Process Type	Vehicle Type	Fuel Type	Commute Distance Traveled (Miles / Day)	Number of Commute Days per Year	Total Mileage by Vehicle Type	Unit of Measure
	1	T	T	T	Γ	1
	POV Passenger	Gasoline	70.070	000	10 002 404	Miles
Commuter	Car POV SUV or Truck	Gasoline	78,272	230	18,002,494	
Travel -			12,121	230	2,787,922	Miles
Personal Owned Vehicles	POV SUV or Truck	Diesel	0	230	0	Miles
Vernoies	Motorcycle	Gasoline	146	230	33,475	Miles
	Hybrid	Gasoline	2,259	230	519,590	Miles
Commuter	Car Pool	Gasoline	9,159	230	2,106,682	Miles
Travel - Car / Van Pools	Van Pool	Gasoline	10,675	230	2,455,353	Miles
						_
	Bus	Diesel	1,185	230	272,491	Miles
Commuter	Metro / Transit Rail	Electric	0	230	0	Miles
Travel - Mass Transit	Commuter Rail	Diesel	0	230	0	Miles
Mass Hallsit	Intercity Rail	Diesel	0	230	0	Miles
	Ferry	Diesel	0	230	0	Miles
	-	-			-	
Commuter Travel - Human Powered	Walking and/or Bicycling		573	230	131,851	Miles

No Build, 2025, , VMT Estimate by Vehicle Type

Process Type	Vehicle Type	Fuel Type	Commute Distance Traveled (Miles / Day)	Number of Commute Days per Year	Total Mileage by Vehicle Type	Unit of Measure
	-	-		_	•	-
	POV Passenger					
Commuter	Car	Gasoline	91,046	230	20,940,483	Miles
Travel -	POV SUV or Truck	Gasoline	14,097	230	3,242,247	Miles
Personal Owned	POV SUV or Truck	Diesel	0	230	0	Miles
Vehicles	Motorcycle	Gasoline	169	230	38,931	Miles
	Hybrid	Gasoline	2,627	230	604,263	Miles
		-		-		
Commuter	Car Pool	Gasoline	10,652	230	2,449,990	Miles
Travel - Car / Van Pools	Van Pool	Gasoline	12,415	230	2,855,482	Miles
	Bus	Diesel	1,378	230	316,897	Miles
Commuter	Metro / Transit Rail	Electric	0	230	0	Miles
Travel - Mass Transit	Commuter Rail	Diesel	0	230	0	Miles
mass mansit	Intercity Rail	Diesel	0	230	0	Miles
	Ferry	Diesel	0	230	0	Miles
	-				-	
Commuter Travel - Human Powered	Walking and/or Bicycling		667	230	153,337	Miles

Build, 2025, VMT Estimate by Vehicle Type

Process Type	Vehicle Type	Fuel Type	Commute Distance Traveled (Miles / Day)	Number of Commute Days per Year	Total Mileage by Vehicle Type	Unit of Measure
	-	-			•	
	POV Passenger					
Commuter	Car	Gasoline	109,724	230	25,236,462	Miles
Travel -	POV SUV or Truck	Gasoline	17,006	230	3,911,473	Miles
Personal Owned	POV SUV or Truck	Diesel	0	230	0	Miles
Vehicles	Motorcycle	Gasoline	180	230	41,422	Miles
	Hybrid	Gasoline	3,169	230	728,941	Miles
		•				<u> </u>
Commuter	Car Pool	Gasoline	10,652	230	2,449,990	Miles
Travel - Car / Van Pools	Van Pool	Gasoline	12,415	230	2,855,482	Miles
	Bus	Diesel	1,378	230	316,897	Miles
Commuter	Metro / Transit Rail	Electric	0	230	0	Miles
Travel - Mass Transit	Commuter Rail	Diesel	0	230	0	Miles
mass mansit	Intercity Rail	Diesel	0	230	0	Miles
	Ferry	Diesel	0	230	0	Miles
Commuter Travel - Human Powered	Walking and/or Bicycling		667	230	153,337	Miles

Existing Conditions, 2012, Emission Factor by Vehicle Type

Process Type	Vehicle Type	Emission Factor CO2	Unit of Measure	Emission Factor CH4	Unit of Measure	Emission Factor N2O	Unit of Measure
	DOV D			1		1	
	POV Passenger Car	0.364	kg CO2/Mile	0.000031	kg CH4/Mile	0.000032	kg N2O/Mile
Commuter Travel -	POV SUV or Truck	0.519	kg CO2/Mile	0.000036	kg CH4/Mile	0.000047	kg N2O/Mile
Personal Owned	POV SUV or Truck	0.561	kg CO2/Mile	0.000001	kg CH4/Mile	0.0000015	kg N2O/Mile
Vehicles	Motorcycle	0.167	kg CO2/Mile	0.00007	kg CH4/Mile	0.000007	kg N2O/Mile
	Hybrid	0.0	kg CO2/Mile	0.0	kg CH4/Mile	0.0	kg N2O/Mile
	-	-		-		-	
Commuter Travel -	Car Pool	0.127	kg CO2/Mile	0.0000108	kg CH4/Mile	0.0000111	kg N2O/Mile
Car / Van Pools	Van Pool	0.058	kg CO2/Mile	0.000002	kg CH4/Mile	0.0000053	kg N2O/Mile
	Bus	0.745	kg CO2/Mile	0.0000006	kg CH4/Mile	0.0000005	kg N2O/Mile
Commuter	Metro / Transit Rail	0.163	kg CO2/Mile	0.000004	kg CH4/Mile	0.000002	kg N2O/Mile
Travel - Mass Transit	Commuter Rail	0.172	kg CO2/Mile	0.000002	kg CH4/Mile	0.000001	kg N2O/Mile
mass rransit	Intercity Rail	0.185	kg CO2/Mile	0.000002	kg CH4/Mile	0.000001	kg N2O/Mile
	Ferry	0.0	kg CO2/Mile	0.0	kg CH4/Mile	0.0	kg N2O/Mile
Commuter Travel - Human Powered	Walking and/or Bicycling	0	kg CO2/Mile	0	kg CH4/Mile	0	kg N2O/Mile

No Build, 2025, Emission Factor by Vehicle Type

Process Type	Init of		Emission Factor CH4	Unit of Measure	Emission Factor N2O	Unit of Measure	
	T = = =	1		1		1	
	POV Passenger Car	0.227	kg CO2/Mile	0.000031	kg CH4/Mile	0.000032	kg N2O/Mile
Commuter Travel -	POV SUV or Truck	0.323	kg CO2/Mile	0.000036	kg CH4/Mile	0.000047	kg N2O/Mile
Personal Owned	POV SUV or Truck	0.349	kg CO2/Mile	0.000001	kg CH4/Mile	0.0000015	kg N2O/Mile
Vehicles	Motorcycle	0.167	kg CO2/Mile	0.00007	kg CH4/Mile	0.000007	kg N2O/Mile
	Hybrid	0.0	kg CO2/Mile	0.0	kg CH4/Mile	0.0	kg N2O/Mile
	-	-		-		-	
Commuter	Car Pool	0.079	kg CO2/Mile	0.0000108	kg CH4/Mile	0.0000111	kg N2O/Mile
Travel - Car / Van Pools	Van Pool	0.058	kg CO2/Mile	0.000002	kg CH4/Mile	0.0000053	kg N2O/Mile
	Bus	0.745	kg CO2/Mile	0.0000006	kg CH4/Mile	0.0000005	kg N2O/Mile
Commuter	Metro / Transit Rail	0.163	kg CO2/Mile	0.000004	kg CH4/Mile	0.000002	kg N2O/Mile
Travel - Mass Transit	Commuter Rail	0.172	kg CO2/Mile	0.000002	kg CH4/Mile	0.000001	kg N2O/Mile
mass Transit	Intercity Rail	0.185	kg CO2/Mile	0.000002	kg CH4/Mile	0.000001	kg N2O/Mile
	Ferry	0.0	kg CO2/Mile	0.0	kg CH4/Mile	0.0	kg N2O/Mile
	T	1		<u>, </u>		1	
Commuter Travel - Human Powered	Walking and/or Bicycling	0	kg CO2/Mile	0	kg CH4/Mile	0	kg N2O/Mile
	·						

Build, 2025, Emission Factor by Vehicle Type

Process Type	Vehicle Type	Emission Factor CO2	Unit of Measure	Emission Factor CH4	Unit of Measure	Emission Factor N2O	Unit of Measure
	T	· · · · · · · · · · · · · · · · · · ·		<u>, </u>		<u> </u>	
	POV Passenger Car	0.227	kg CO2/Mile	0.000031	kg CH4/Mile	0.000032	kg N2O/Mile
Commuter Travel -	POV SUV or Truck	0.323	kg CO2/Mile	0.000036	kg CH4/Mile	0.000047	kg N2O/Mile
Personal Owned	POV SUV or Truck	0.349	kg CO2/Mile	0.000001	kg CH4/Mile	0.0000015	kg N2O/Mile
Vehicles	Motorcycle	0.167	kg CO2/Mile	0.00007	kg CH4/Mile	0.000007	kg N2O/Mile
	Hybrid	0.0	kg CO2/Mile	0.0	kg CH4/Mile	0.0	kg N2O/Mile
	-	-		-		-	
Commuter Travel -	Car Pool	0.079	kg CO2/Mile	0.0000108	kg CH4/Mile	0.0000111	kg N2O/Mile
Car / Van Pools	Van Pool	0.058	kg CO2/Mile	0.000002	kg CH4/Mile	0.0000053	kg N2O/Mile
	Bus	0.745	kg CO2/Mile	0.0000006	kg CH4/Mile	0.0000005	kg N2O/Mile
Commuter	Metro / Transit Rail	0.163	kg CO2/Mile	0.000004	kg CH4/Mile	0.000002	kg N2O/Mile
Travel - Mass Transit	Commuter Rail	0.172	kg CO2/Mile	0.000002	kg CH4/Mile	0.000001	kg N2O/Mile
Muss Transit	Intercity Rail	0.185	kg CO2/Mile	0.000002	kg CH4/Mile	0.000001	kg N2O/Mile
	Ferry	0.0	kg CO2/Mile	0.0	kg CH4/Mile	0.0	kg N2O/Mile
_	T	, · · · · · · · · · · · · · · · · · · ·		<u>, </u>		, · · · · · · · · · · · · · · · · · · ·	
Commuter Travel - Human Powered	Walking and/or Bicycling	0	kg CO2/Mile	0	kg CH4/Mile	0	kg N2O/Mile

Existing Conditions, 2012, Total CO2e Emitted

Process Type	Vehicle Type	Global Warming Potential Factor for CO2	Global Warming Potential Factor for CH4	Global Warming Potential Factor for N2O	Unit of Measure	Total Quantity Emitted by Type	Unit of Measure	Total Quantity Emitted by Type	Unit of Measure
	POV Passenger		24	24.0		6.740.040		6.740	MT
	Car	1	21	310	CO2e	6,743,212	kg CO2e	6,743	CO2e
Commuter Travel -	POV SUV or Truck	1	21	310	CO2e	1,489,659	kg CO2e	1,490	MT CO2e
Personal Owned Vehicles	POV SUV or Truck	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
	Motorcycle	1	21	310	CO2e	5,712	kg CO2e	6	MT CO2e
	Hybrid	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Commuter Travel -	Car Pool	1	21	310	CO2e	275,275	kg CO2e	275	MT CO2e
Car / Van Pools	Van Pool	1	21	310	CO2e	146,548	kg CO2e	147	MT CO2e
	Bus	1	21	310	CO2e	203,052	kg CO2e	203	MT CO2e
	Metro / Transit Rail	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Commuter Travel - Mass Transit	Commuter Rail	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
	Intercity Rail	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
	Ferry	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Commuter Travel - Human Powered	Walking and/or Bicycling	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Total Commuter Travel Emissions								8,863.5	MT CO2e

No Build, 2025, Total CO2e Emitted

Process Type	Vehicle Type	Global Warming Potential Factor for CO2	Global Warming Potential Factor for CH4	Global Warming Potential Factor for N2O	Unit of Measure	Total Quantity Emitted by Type	Unit of Measure	Total Quantity Emitted by Type	Unit of Measure
	POV Passenger Car	1	21	310	CO2e	4,968,606	kg CO2e	4,969	MT CO2e
Commuter Travel -	POV SUV or Truck	1	21	310	CO2e	1,097,704	kg CO2e	1,098	MT CO2e
Personal Owned Vehicles	POV SUV or Truck	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
	Motorcycle	1	21	310	CO2e	6,643	kg CO2e	7	MT CO2e
	Hybrid	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Commuter Travel -	Car Pool	1	21	310	CO2e	202,772	kg CO2e	203	MT CO2e
Car / Van Pools	Van Pool	1	21	310	CO2e	170,429	kg CO2e	170	MT CO2e
	Bus	1	21	310	CO2e	236,141	kg CO2e	236	MT CO2e
	Metro / Transit Rail	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Commuter Travel - Mass Transit	Commuter Rail	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
	Intercity Rail	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
	Ferry	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Commuter Travel - Human Powered	Walking and/or Bicycling	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Total Commuter Travel Emissions								6,682.3	MT CO2e

Build, 2025, Total CO2e Emitted

Process Type	Vehicle Type	Global Warming Potential Factor for CO2	Global Warming Potential Factor for CH4	Global Warming Potential Factor for N2O	Unit of Measure	Total Quantity Emitted by Type	Unit of Measure	Total Quantity Emitted by Type	Unit of Measure
	POV Passenger								MT
	Car	1	21	310	CO2e	5,987,925	kg CO2e	5,988	CO2e
Commuter Travel -	POV SUV or Truck	1	21	310	CO2e	1,324,279	kg CO2e	1,324	MT CO2e
Personal Owned Vehicles	POV SUV or Truck	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
	Motorcycle	1	21	310	CO2e	7,068	kg CO2e	7	MT CO2e
	Hybrid	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Commuter Travel -	Car Pool	1	21	310	CO2e	202,772	kg CO2e	203	MT CO2e
Car / Van Pools	Van Pool	1	21	310	CO2e	170,429	kg CO2e	170	MT CO2e
	Bus	1	21	310	CO2e	236,141	kg CO2e	236	MT CO2e
	Metro / Transit Rail	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Commuter Travel - Mass Transit	Commuter Rail	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
	Intercity Rail	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
	Ferry	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Commuter Travel - Human Powered	Walking and/or Bicycling	1	21	310	CO2e	0	kg CO2e	0	MT CO2e
Total Commuter Travel Emissions								7,928.6	MT CO2e

